logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

66 lines
2.0 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pprint
class EmbeddingOutput:
"""
Container for embedding extractor.
"""
def __init__(self):
self.embeddings = []
def __call__(self, module, module_in, module_out):
self.embeddings.append(module_out)
def clear(self):
"""
clear list
"""
self.embeddings = []
class EmbeddingExtractor:
"""
Embedding extractor from a layer
Args:
model (`nn.Module`):
Model used for inference.
"""
def __init__(self, model):
# self.modules = model.modules()
# self.modules_list = list(model.named_modules(remove_duplicate=False))
self.modules_dict = dict(model.named_modules(remove_duplicate=False))
self.emb_out = EmbeddingOutput()
def disp_modules(self, full=False):
"""
Display the the modules of the model.
"""
if not full:
pprint.pprint(list(self.modules_dict.keys()))
else:
pprint.pprint(self.modules_dict)
def register(self, layer_name: str):
"""
Registration for embedding extraction.
Args:
layer_name (`str`):
Name of the layer from which the embedding is extracted.
"""
if layer_name in self.modules_dict:
layer = self.modules_dict[layer_name]
layer.register_forward_hook(self.emb_out)
else:
raise ValueError('layer_name not in modules')