towhee
/
resnet-image-embedding
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
66 lines
2.0 KiB
66 lines
2.0 KiB
3 years ago
|
# Copyright 2021 Zilliz. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import pprint
|
||
|
|
||
|
class EmbeddingOutput:
|
||
|
"""
|
||
|
Container for embedding extractor.
|
||
|
"""
|
||
|
def __init__(self):
|
||
|
self.embeddings = []
|
||
|
|
||
|
def __call__(self, module, module_in, module_out):
|
||
|
self.embeddings.append(module_out)
|
||
|
|
||
|
def clear(self):
|
||
|
"""
|
||
|
clear list
|
||
|
"""
|
||
|
self.embeddings = []
|
||
|
|
||
|
|
||
|
class EmbeddingExtractor:
|
||
|
"""
|
||
|
Embedding extractor from a layer
|
||
|
Args:
|
||
|
model (`nn.Module`):
|
||
|
Model used for inference.
|
||
|
"""
|
||
|
def __init__(self, model):
|
||
|
# self.modules = model.modules()
|
||
|
# self.modules_list = list(model.named_modules(remove_duplicate=False))
|
||
|
self.modules_dict = dict(model.named_modules(remove_duplicate=False))
|
||
|
self.emb_out = EmbeddingOutput()
|
||
|
|
||
|
def disp_modules(self, full=False):
|
||
|
"""
|
||
|
Display the the modules of the model.
|
||
|
"""
|
||
|
if not full:
|
||
|
pprint.pprint(list(self.modules_dict.keys()))
|
||
|
else:
|
||
|
pprint.pprint(self.modules_dict)
|
||
|
|
||
|
def register(self, layer_name: str):
|
||
|
"""
|
||
|
Registration for embedding extraction.
|
||
|
Args:
|
||
|
layer_name (`str`):
|
||
|
Name of the layer from which the embedding is extracted.
|
||
|
"""
|
||
|
if layer_name in self.modules_dict:
|
||
|
layer = self.modules_dict[layer_name]
|
||
|
layer.register_forward_hook(self.emb_out)
|
||
|
else:
|
||
|
raise ValueError('layer_name not in modules')
|