|
|
|
# Copyright 2021 Zilliz. All rights reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import sys
|
|
|
|
import numpy
|
|
|
|
import torch
|
|
|
|
import torchvision
|
|
|
|
from PIL import Image
|
|
|
|
from torch import nn as nn
|
|
|
|
from torchvision import transforms
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import NamedTuple
|
|
|
|
import os
|
|
|
|
from torchvision.transforms import InterpolationMode
|
|
|
|
from towhee.operator import NNOperator
|
|
|
|
from towhee.utils.pil_utils import to_pil
|
|
|
|
import warnings
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
|
|
|
|
|
class ResnetImageEmbedding(NNOperator):
|
|
|
|
"""
|
|
|
|
PyTorch model for image embedding.
|
|
|
|
"""
|
|
|
|
def __init__(self, model_name: str, num_classes: int = 1000, framework: str = 'pytorch') -> None:
|
|
|
|
super().__init__(framework=framework)
|
|
|
|
if framework == 'pytorch':
|
|
|
|
import importlib.util
|
|
|
|
path = os.path.join(str(Path(__file__).parent), 'pytorch', 'model.py')
|
|
|
|
opname = os.path.basename(str(Path(__file__))).split('.')[0]
|
|
|
|
spec = importlib.util.spec_from_file_location(opname, path)
|
|
|
|
module = importlib.util.module_from_spec(spec)
|
|
|
|
spec.loader.exec_module(module)
|
|
|
|
self.model = module.Model(model_name, num_classes=num_classes)
|
|
|
|
self.tfms = transforms.Compose([transforms.Resize(235, interpolation=InterpolationMode.BICUBIC),
|
|
|
|
transforms.CenterCrop(224),
|
|
|
|
transforms.ToTensor(),
|
|
|
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
|
|
|
|
|
|
|
|
def __call__(self, image: 'towhee.types.Image') -> NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]):
|
|
|
|
img = self.tfms(to_pil(image)).unsqueeze(0)
|
|
|
|
embedding = self.model(img)
|
|
|
|
Outputs = NamedTuple('Outputs', [('feature_vector', numpy.ndarray)])
|
|
|
|
return Outputs(embedding)
|
|
|
|
|
|
|
|
def get_model(self) -> nn.Module:
|
|
|
|
return self.model._model
|
|
|
|
|
|
|
|
def change_before_train(self, num_classes: int = 0):
|
|
|
|
if num_classes > 0:
|
|
|
|
self.model.create_classifier(num_classes)
|