|
|
|
# Copyright 2021 Zilliz. All rights reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import numpy
|
|
|
|
import timm
|
|
|
|
import torch
|
|
|
|
from torch import nn as nn
|
|
|
|
from torch.nn import Linear
|
|
|
|
from torchvision import transforms
|
|
|
|
from typing import NamedTuple
|
|
|
|
from torchvision.transforms import InterpolationMode
|
|
|
|
from towhee.operator import NNOperator
|
|
|
|
from towhee.utils.pil_utils import to_pil
|
|
|
|
import warnings
|
|
|
|
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
|
|
|
|
|
|
|
|
|
class ResnetImageEmbedding(NNOperator):
|
|
|
|
"""
|
|
|
|
PyTorch model for image embedding.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, model_name: str, num_classes: int = 1000, framework: str = 'pytorch') -> None:
|
|
|
|
super().__init__(framework=framework)
|
|
|
|
self.model = timm.create_model(model_name, pretrained=True)
|
|
|
|
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
pretrained_dict = None
|
|
|
|
if model_name == 'resnet101':
|
|
|
|
pretrained_dict = torch.hub.load_state_dict_from_url(
|
|
|
|
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet101_a1h-36d3f2aa.pth')
|
|
|
|
if model_name == 'resnet50':
|
|
|
|
pretrained_dict = torch.hub.load_state_dict_from_url(
|
|
|
|
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1_0-14fe96d1.pth')
|
|
|
|
if pretrained_dict:
|
|
|
|
self.model.load_state_dict(pretrained_dict, strict=False)
|
|
|
|
if num_classes != 1000:
|
|
|
|
self.create_classifier(num_classes=num_classes)
|
|
|
|
self.model.eval()
|
|
|
|
|
|
|
|
self.tfms = transforms.Compose([transforms.Resize(235, interpolation=InterpolationMode.BICUBIC),
|
|
|
|
transforms.CenterCrop(224),
|
|
|
|
transforms.ToTensor(),
|
|
|
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
|
|
|
|
|
|
|
|
def __call__(self, image: 'towhee.types.Image') -> NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]):
|
|
|
|
self.model.to(self.device)
|
|
|
|
img_tensor = self.tfms(to_pil(image)).unsqueeze(0)
|
|
|
|
self.model.eval()
|
|
|
|
features = self.model.forward_features(img_tensor)
|
|
|
|
if features.dim() == 4: # if the shape of feature map is [N, C, H, W], where H > 1 and W > 1
|
|
|
|
global_pool = nn.AdaptiveAvgPool2d(1)
|
|
|
|
features = global_pool(features)
|
|
|
|
features = features.to('cpu')
|
|
|
|
embedding = features.flatten().detach().numpy()
|
|
|
|
Outputs = NamedTuple('Outputs', [('feature_vector', numpy.ndarray)])
|
|
|
|
return Outputs(embedding)
|
|
|
|
|
|
|
|
|
|
|
|
def create_classifier(self, num_classes):
|
|
|
|
self.model.fc = Linear(self.model.fc.in_features, num_classes, bias=True)
|