|
|
@ -43,12 +43,12 @@ if __name__ == '__main__': |
|
|
|
# dump_default_yaml(yaml_path=yaml_path) |
|
|
|
training_config.load_from_yaml(yaml_path) |
|
|
|
|
|
|
|
training_config.overwrite_output_dir=True |
|
|
|
training_config.epoch_num=3 |
|
|
|
training_config.batch_size=256 |
|
|
|
training_config.device_str='cpu' |
|
|
|
training_config.n_gpu=-1 |
|
|
|
training_config.save_to_yaml(yaml_path) |
|
|
|
# training_config.overwrite_output_dir=True |
|
|
|
# training_config.epoch_num=3 |
|
|
|
# training_config.batch_size=256 |
|
|
|
# training_config.device_str='cpu' |
|
|
|
# training_config.n_gpu=-1 |
|
|
|
# training_config.save_to_yaml(yaml_path) |
|
|
|
|
|
|
|
# mnist_transform = transforms.Compose([transforms.ToTensor(), |
|
|
|
# RandomResizedCrop(224), |
|
|
@ -59,8 +59,8 @@ if __name__ == '__main__': |
|
|
|
# training_config.output_dir = 'mnist_output' |
|
|
|
fake_transform = transforms.Compose([transforms.ToTensor(), |
|
|
|
RandomResizedCrop(224),]) |
|
|
|
train_data = dataset('fake', size=1000, transform=fake_transform) |
|
|
|
eval_data = dataset('fake', size=500, transform=fake_transform) |
|
|
|
train_data = dataset('fake', size=100, transform=fake_transform) |
|
|
|
eval_data = dataset('fake', size=10, transform=fake_transform) |
|
|
|
training_config.output_dir = 'fake_output' |
|
|
|
|
|
|
|
# trainer = op.setup_trainer() |
|
|
@ -87,7 +87,7 @@ if __name__ == '__main__': |
|
|
|
# op.train(training_config, train_dataset=train_data, eval_dataset=eval_data, resume_checkpoint_path=training_config.output_dir + '/epoch_2') |
|
|
|
|
|
|
|
# op.save('./test_save') |
|
|
|
# op.load('./test_save') |
|
|
|
# new_out = op(towhee_img) |
|
|
|
# |
|
|
|
# assert (new_out[0]!=old_out[0]).all() |
|
|
|
# op.load('./test_save')\ |
|
|
|
|
|
|
|
new_out = op(towhee_img) |
|
|
|
assert (new_out.feature_vector==old_out.feature_vector).all() |
|
|
|