|
|
@ -35,61 +35,59 @@ if __name__ == '__main__': |
|
|
|
# op.model_card = ModelCard(model_details="resnet test modelcard", training_data="use resnet test data") |
|
|
|
old_out = op(towhee_img) |
|
|
|
# print(old_out.feature_vector[0][:10]) |
|
|
|
print(old_out.feature_vector[:10]) |
|
|
|
# print(old_out.feature_vector[:10]) |
|
|
|
# print(old_out.feature_vector.shape) |
|
|
|
|
|
|
|
training_config = TrainingConfig() |
|
|
|
yaml_path = 'resnet_training_yaml.yaml' |
|
|
|
# dump_default_yaml(yaml_path=yaml_path) |
|
|
|
training_config.load_from_yaml(yaml_path) |
|
|
|
# output_dir='./temp_output', |
|
|
|
# overwrite_output_dir=True, |
|
|
|
# epoch_num=2, |
|
|
|
# per_gpu_train_batch_size=16, |
|
|
|
# prediction_loss_only=True, |
|
|
|
# metric='Accuracy' |
|
|
|
# # device_str='cuda', |
|
|
|
# # n_gpu=4 |
|
|
|
# ) |
|
|
|
# |
|
|
|
mnist_transform = transforms.Compose([transforms.ToTensor(), |
|
|
|
RandomResizedCrop(224), |
|
|
|
Lambda(lambda x: x.repeat(3, 1, 1)), |
|
|
|
transforms.Normalize(mean=[0.5], std=[0.5])]) |
|
|
|
train_data = dataset('mnist', transform=mnist_transform, download=True, root='data', train=True) |
|
|
|
eval_data = dataset('mnist', transform=mnist_transform, download=True, root='data', train=False) |
|
|
|
# fake_transform = transforms.Compose([transforms.ToTensor(), |
|
|
|
# RandomResizedCrop(224),]) |
|
|
|
# train_data = get_dataset('fake', size=20, transform=fake_transform) |
|
|
|
# |
|
|
|
# op.change_before_train(num_classes=10) |
|
|
|
# # trainer = op.setup_trainer() |
|
|
|
|
|
|
|
training_config.overwrite_output_dir=True |
|
|
|
training_config.epoch_num=3 |
|
|
|
training_config.batch_size=256 |
|
|
|
training_config.device_str='cpu' |
|
|
|
training_config.n_gpu=-1 |
|
|
|
training_config.save_to_yaml(yaml_path) |
|
|
|
|
|
|
|
# mnist_transform = transforms.Compose([transforms.ToTensor(), |
|
|
|
# RandomResizedCrop(224), |
|
|
|
# Lambda(lambda x: x.repeat(3, 1, 1)), |
|
|
|
# transforms.Normalize(mean=[0.5], std=[0.5])]) |
|
|
|
# train_data = dataset('mnist', transform=mnist_transform, download=True, root='data', train=True) |
|
|
|
# eval_data = dataset('mnist', transform=mnist_transform, download=True, root='data', train=False) |
|
|
|
# training_config.output_dir = 'mnist_output' |
|
|
|
fake_transform = transforms.Compose([transforms.ToTensor(), |
|
|
|
RandomResizedCrop(224),]) |
|
|
|
train_data = dataset('fake', size=1000, transform=fake_transform) |
|
|
|
eval_data = dataset('fake', size=500, transform=fake_transform) |
|
|
|
training_config.output_dir = 'fake_output' |
|
|
|
|
|
|
|
# trainer = op.setup_trainer() |
|
|
|
# print(op.get_model()) |
|
|
|
# # my_optimimzer = AdamW(op.get_model().parameters(), lr=0.002, betas=(0.91, 0.98), eps=1e-08, weight_decay=0.01, amsgrad=False) |
|
|
|
# # op.setup_trainer() |
|
|
|
# my_optimimzer = AdamW(op.get_model().parameters(), lr=0.002, betas=(0.91, 0.98), eps=1e-08, weight_decay=0.01, amsgrad=False) |
|
|
|
# op.setup_trainer() |
|
|
|
# |
|
|
|
# # trainer.add_callback() |
|
|
|
# # trainer.set_optimizer() |
|
|
|
# trainer.add_callback() |
|
|
|
# trainer.set_optimizer() |
|
|
|
# |
|
|
|
# # op.trainer.set_optimizer(my_optimimzer) |
|
|
|
# # trainer.configs.save_to_yaml('changed_optimizer_yaml.yaml') |
|
|
|
# op.trainer.set_optimizer(my_optimimzer) |
|
|
|
# trainer.configs.save_to_yaml('changed_optimizer_yaml.yaml') |
|
|
|
# |
|
|
|
# # my_loss = nn.BCELoss() |
|
|
|
# # trainer.set_loss(my_loss, 'my_loss111') |
|
|
|
# # trainer.configs.save_to_yaml('chaned_loss_yaml.yaml') |
|
|
|
# # op.trainer._create_optimizer() |
|
|
|
# # op.trainer.set_optimizer() |
|
|
|
# # trainer = op.setup_trainer(training_config, train_dataset=train_data, eval_dataset=eval_data) |
|
|
|
# |
|
|
|
# # freezer = LayerFreezer(op.get_model()) |
|
|
|
# # freezer.by_idx([-1]) |
|
|
|
# my_loss = nn.BCELoss() |
|
|
|
# trainer.set_loss(my_loss, 'my_loss111') |
|
|
|
# trainer.configs.save_to_yaml('chaned_loss_yaml.yaml') |
|
|
|
# op.trainer._create_optimizer() |
|
|
|
# op.trainer.set_optimizer() |
|
|
|
# trainer = op.setup_trainer(training_config, train_dataset=train_data, eval_dataset=eval_data) |
|
|
|
|
|
|
|
freezer = LayerFreezer(op.get_model()) |
|
|
|
freezer.set_slice(-1) |
|
|
|
op.train(training_config, train_dataset=train_data, eval_dataset=eval_data) |
|
|
|
# # op.trainer.run_train() |
|
|
|
# # training_config.num_epoch = 3 |
|
|
|
# # op.train(training_config, train_dataset=train_data, resume_checkpoint_path=training_config.output_dir + '/epoch_2') |
|
|
|
# |
|
|
|
# # op.save('./test_save') |
|
|
|
# # op.load('./test_save') |
|
|
|
# # new_out = op(towhee_img) |
|
|
|
# op.train(training_config, train_dataset=train_data, eval_dataset=eval_data, resume_checkpoint_path=training_config.output_dir + '/epoch_2') |
|
|
|
|
|
|
|
# op.save('./test_save') |
|
|
|
# op.load('./test_save') |
|
|
|
# new_out = op(towhee_img) |
|
|
|
# |
|
|
|
# # assert (new_out[0]!=old_out[0]).all() |
|
|
|
# assert (new_out[0]!=old_out[0]).all() |
|
|
|