logo
Browse Source

add eval ability

training
zhang chen 3 years ago
parent
commit
f1346e4f45
  1. 4
      resnet_training_yaml.yaml
  2. 20
      test.py

4
resnet_training_yaml.yaml

@ -7,7 +7,7 @@ metrics:
train:
batch_size: 32
overwrite_output_dir: true
epoch_num: 1
epoch_num: 2
learning:
optimizer:
name_: SGD
@ -16,6 +16,8 @@ learning:
loss:
name_: CrossEntropyLoss
ignore_index: -1
logging:
print_steps: 2
#learning:
# optimizer:
# name_: Adam

20
test.py

@ -29,7 +29,7 @@ if __name__ == '__main__':
towhee_img = Image(img_bytes, img_width, img_height, img_channel, img_mode, img_array)
op = ResnetImageEmbedding('resnet34')
op.model_card = ModelCard(model_details="resnet test modelcard", training_data="use resnet test data")
# op.model_card = ModelCard(model_details="resnet test modelcard", training_data="use resnet test data")
# old_out = op(towhee_img)
# print(old_out.feature_vector[0])
@ -51,33 +51,31 @@ if __name__ == '__main__':
RandomResizedCrop(224),
Lambda(lambda x: x.repeat(3, 1, 1)),
transforms.Normalize(mean=[0.5], std=[0.5])])
train_data = get_dataset('mnist', transform=mnist_transform, download=True, root='data')
train_data = get_dataset('mnist', transform=mnist_transform, download=True, root='data', train=True)
eval_data = get_dataset('mnist', transform=mnist_transform, download=True, root='data', train=False)
# fake_transform = transforms.Compose([transforms.ToTensor(),
# RandomResizedCrop(224),])
# train_data = get_dataset('fake', size=20, transform=fake_transform)
op.change_before_train(10)
trainer = op.setup_trainer()
my_optimimzer = AdamW(op.get_model().parameters(), lr=0.002, betas=(0.91, 0.98), eps=1e-08, weight_decay=0.01, amsgrad=False)
# my_optimimzer = AdamW(op.get_model().parameters(), lr=0.002, betas=(0.91, 0.98), eps=1e-08, weight_decay=0.01, amsgrad=False)
# op.setup_trainer()
# trainer.add_callback()
# trainer.set_optimizer()
op.trainer.set_optimizer(my_optimimzer)
trainer.configs.save_to_yaml('changed_optimizer_yaml.yaml')
# op.trainer.set_optimizer(my_optimimzer)
# trainer.configs.save_to_yaml('changed_optimizer_yaml.yaml')
# my_loss = nn.BCELoss()
# trainer.set_loss(my_loss, 'my_loss111')
# trainer.configs.save_to_yaml('chaned_loss_yaml.yaml')
# op.trainer._create_optimizer()
# op.trainer.set_optimizer()
op.train(training_config, train_dataset=train_data)
training_config.num_epoch = 3
op.train(training_config, train_dataset=train_data, resume_checkpoint_path=training_config.output_dir + '/epoch_2')
op.train(training_config, train_dataset=train_data, eval_dataset=eval_data)
# training_config.num_epoch = 3
# op.train(training_config, train_dataset=train_data, resume_checkpoint_path=training_config.output_dir + '/epoch_2')
# op.save('./test_save')
# op.load('./test_save')

Loading…
Cancel
Save