# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy import timm import torch from torch import nn as nn from torch.nn import Linear from torchvision import transforms from typing import NamedTuple from torchvision.transforms import InterpolationMode from towhee.operator import NNOperator from towhee.utils.pil_utils import to_pil import warnings warnings.filterwarnings("ignore") class ResnetImageEmbedding(NNOperator): """ PyTorch model for image embedding. """ def __init__(self, model_name: str, num_classes: int = 1000, framework: str = 'pytorch') -> None: super().__init__(framework=framework) self.model = timm.create_model(model_name, pretrained=True) self.device = 'cuda' if torch.cuda.is_available() else 'cpu' pretrained_dict = None if model_name == 'resnet101': pretrained_dict = torch.hub.load_state_dict_from_url( 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet101_a1h-36d3f2aa.pth') if model_name == 'resnet50': pretrained_dict = torch.hub.load_state_dict_from_url( 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1_0-14fe96d1.pth') if pretrained_dict: self.model.load_state_dict(pretrained_dict, strict=False) if num_classes != 1000: self.create_classifier(num_classes=num_classes) self.model.eval() self.tfms = transforms.Compose([transforms.Resize(235, interpolation=InterpolationMode.BICUBIC), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) def __call__(self, image: 'towhee.types.Image') -> NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]): self.model.to(self.device) img_tensor = self.tfms(to_pil(image)).unsqueeze(0) self.model.eval() features = self.model.forward_features(img_tensor) if features.dim() == 4: # if the shape of feature map is [N, C, H, W], where H > 1 and W > 1 global_pool = nn.AdaptiveAvgPool2d(1) features = global_pool(features) features = features.to('cpu') embedding = features.flatten().detach().numpy() Outputs = NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]) return Outputs(embedding) def create_classifier(self, num_classes): self.model.fc = Linear(self.model.fc.in_features, num_classes, bias=True)