# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import NamedTuple import numpy import torch import torchvision from torch.nn import Linear from timm.models.resnet import ResNet # ResNet. from pytorch.embedding_extractor import EmbeddingExtractor #todo:后面改成用towhee.models.embedding.下面的EmbeddingExtractor,这个现在在origin main分支上可用,但在train分支上不可用 class Model(): """ PyTorch model class """ def __init__(self, model_name): super().__init__() model_func = getattr(torchvision.models, model_name) self._model = model_func(pretrained=True) state_dict = None if model_name == 'resnet101': state_dict = torch.hub.load_state_dict_from_url( 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet101_a1h-36d3f2aa.pth') if model_name == 'resnet50': state_dict = torch.hub.load_state_dict_from_url( 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1_0-14fe96d1.pth') if state_dict: self._model.load_state_dict(state_dict) # self._model.fc = torch.nn.Identity() self._model.eval() self.ex = EmbeddingExtractor(self._model) # self.ex.disp_modules(full=True) self.ex.register('avgpool') def __call__(self, img_tensor: torch.Tensor): self.ex.emb_out.clear() self._model(img_tensor) # return self.fc_input[0] return self.ex.emb_out.embeddings[0] # return self._model(img_tensor).flatten().detach().numpy() #todo def create_classifier(self, num_classes): self._model.fc = Linear(self._model.fc.in_features, num_classes, bias=True) # self._model.classifier.register_forward_hook(self._forward_hook) # def train(self): # """ # For training model # """ # pass