{ "cells": [ { "cell_type": "markdown", "source": [ "# Read the configs from a yaml file." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from resnet_image_embedding import ResnetImageEmbedding\n", "from torchvision import transforms\n", "from towhee import dataset\n", "\n", "# build an resnet op:\n", "op = ResnetImageEmbedding('resnet18', num_classes=10)" ] }, { "cell_type": "code", "execution_count": 2, "outputs": [], "source": [ "from towhee.trainer.training_config import dump_default_yaml\n", "\n", "# If you want to see the default setting yaml, run dump_default_yaml()\n", "dump_default_yaml('default_setting.yaml')" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "##### Then you can open `default_setting.yaml` to observe the yaml structure.\n", "##### Change `batch_size` to 5, `epoch_num` to 3, `tensorboard` to `null`, `output_dir` to `my_output`, `print_steps` to 1, and save it as `my_setting.yaml`" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 3, "outputs": [ { "data": { "text/plain": "TrainingConfig(output_dir='my_output', overwrite_output_dir=True, eval_strategy='epoch', eval_steps=None, batch_size=5, val_batch_size=-1, seed=42, epoch_num=3, dataloader_pin_memory=True, dataloader_drop_last=True, dataloader_num_workers=-1, lr=5e-05, metric='Accuracy', print_steps=1, load_best_model_at_end=False, early_stopping={'mode': 'max', 'monitor': 'eval_epoch_metric', 'patience': 4}, model_checkpoint={'every_n_epoch': 1}, tensorboard=None, loss='CrossEntropyLoss', optimizer='Adam', lr_scheduler_type='linear', warmup_ratio=0.0, warmup_steps=0, device_str=None, n_gpu=-1, sync_bn=False, freeze_bn=False)" }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from towhee.trainer.training_config import TrainingConfig\n", "\n", "# now, read from your custom yaml.\n", "training_config = TrainingConfig()\n", "training_config.load_from_yaml('my_setting.yaml')\n", "training_config\n" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 4, "outputs": [], "source": [ "# prepare the fake dataset\n", "fake_transform = transforms.Compose([transforms.ToTensor()])\n", "train_data = dataset('fake', size=20, transform=fake_transform)\n", "eval_data = dataset('fake', size=10, transform=fake_transform)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "code", "execution_count": 5, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2022-03-02 16:00:26,226 - 8666785280 - trainer.py-trainer:390 - WARNING: TrainingConfig(output_dir='my_output', overwrite_output_dir=True, eval_strategy='epoch', eval_steps=None, batch_size=5, val_batch_size=-1, seed=42, epoch_num=3, dataloader_pin_memory=True, dataloader_drop_last=True, dataloader_num_workers=-1, lr=5e-05, metric='Accuracy', print_steps=1, load_best_model_at_end=False, early_stopping={'mode': 'max', 'monitor': 'eval_epoch_metric', 'patience': 4}, model_checkpoint={'every_n_epoch': 1}, tensorboard=None, loss='CrossEntropyLoss', optimizer='Adam', lr_scheduler_type='linear', warmup_ratio=0.0, warmup_steps=0, device_str=None, n_gpu=-1, sync_bn=False, freeze_bn=False)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "epoch=1/3, global_step=1, epoch_loss=2.5702719688415527, epoch_metric=0.0\n", "epoch=1/3, global_step=2, epoch_loss=2.572024345397949, epoch_metric=0.0\n", "epoch=1/3, global_step=3, epoch_loss=2.558194160461426, epoch_metric=0.0\n", "epoch=1/3, global_step=4, epoch_loss=2.558873176574707, epoch_metric=0.15000000596046448\n", "epoch=1/3, eval_global_step=0, eval_epoch_loss=2.370976686477661, eval_epoch_metric=0.20000000298023224\n", "epoch=1/3, eval_global_step=1, eval_epoch_loss=2.2873291969299316, eval_epoch_metric=0.20000000298023224\n", "epoch=2/3, global_step=5, epoch_loss=1.3134113550186157, epoch_metric=0.20000000298023224\n", "epoch=2/3, global_step=6, epoch_loss=1.3073358535766602, epoch_metric=0.10000000149011612\n", "epoch=2/3, global_step=7, epoch_loss=1.41914701461792, epoch_metric=0.13333334028720856\n", "epoch=2/3, global_step=8, epoch_loss=1.3628838062286377, epoch_metric=0.15000000596046448\n", "epoch=2/3, eval_global_step=2, eval_epoch_loss=1.3158948421478271, eval_epoch_metric=0.20000000298023224\n", "epoch=2/3, eval_global_step=3, eval_epoch_loss=1.3246530294418335, eval_epoch_metric=0.20000000298023224\n", "epoch=3/3, global_step=9, epoch_loss=1.4589173793792725, epoch_metric=0.0\n", "epoch=3/3, global_step=10, epoch_loss=1.4343616962432861, epoch_metric=0.0\n", "epoch=3/3, global_step=11, epoch_loss=1.3701648712158203, epoch_metric=0.06666667014360428\n", "epoch=3/3, global_step=12, epoch_loss=1.1501117944717407, epoch_metric=0.10000000149011612\n", "epoch=3/3, eval_global_step=4, eval_epoch_loss=1.1129425764083862, eval_epoch_metric=0.0\n", "epoch=3/3, eval_global_step=5, eval_epoch_loss=1.1257113218307495, eval_epoch_metric=0.0\n" ] } ], "source": [ "# start training,\n", "op.train(training_config, train_dataset=train_data, eval_dataset=eval_data)" ], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } }, { "cell_type": "markdown", "source": [ "### Because you have set the `print_steps` to 1, you will not see the progress bar, instead, you will see the every batch steps result printed on the screen. You can check whether other configs ares work correctly." ], "metadata": { "collapsed": false, "pycharm": { "name": "#%% md\n" } } }, { "cell_type": "code", "execution_count": null, "outputs": [], "source": [], "metadata": { "collapsed": false, "pycharm": { "name": "#%%\n" } } } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }