# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch.nn import Linear from torch import nn import timm class Model(): """ PyTorch model class """ def __init__(self, model_name, num_classes=1000): super().__init__() self._model = timm.create_model(model_name, pretrained=True) pretrained_dict = None if model_name == 'resnet101': pretrained_dict = torch.hub.load_state_dict_from_url( 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet101_a1h-36d3f2aa.pth') if model_name == 'resnet50': pretrained_dict = torch.hub.load_state_dict_from_url( 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1_0-14fe96d1.pth') if pretrained_dict: self._model.load_state_dict(pretrained_dict, strict=False) if num_classes != 1000: self.create_classifier(num_classes=num_classes) self._model.eval() def __call__(self, img_tensor: torch.Tensor): self._model.eval() features = self._model.forward_features(img_tensor) if features.dim() == 4: # if the shape of feature map is [N, C, H, W], where H > 1 and W > 1 global_pool = nn.AdaptiveAvgPool2d(1) features = global_pool(features) return features.flatten().detach().numpy() def create_classifier(self, num_classes): self._model.fc = Linear(self._model.fc.in_features, num_classes, bias=True)