logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

85 lines
3.4 KiB

3 years ago
import numpy as np
from torch.optim import AdamW
from torchvision import transforms
from torchvision.transforms import RandomResizedCrop, Lambda
from towhee.trainer.modelcard import ModelCard
from towhee.trainer.training_config import TrainingConfig
from towhee.trainer.dataset import get_dataset
from resnet_image_embedding import ResnetImageEmbedding
from towhee.types import Image
from towhee.trainer.training_config import dump_default_yaml
from PIL import Image as PILImage
from timm.models.resnet import ResNet
from torch import nn
if __name__ == '__main__':
dump_default_yaml(yaml_path='default_config.yaml')
# img = torch.rand([1, 3, 224, 224])
img_path = './ILSVRC2012_val_00049771.JPEG'
# # logo_path = os.path.join(Path(__file__).parent.parent.parent.parent.resolve(), 'towhee_logo.png')
img = PILImage.open(img_path)
img_bytes = img.tobytes()
img_width = img.width
img_height = img.height
img_channel = len(img.split())
img_mode = img.mode
img_array = np.array(img)
array_size = np.array(img).shape
towhee_img = Image(img_bytes, img_width, img_height, img_channel, img_mode, img_array)
op = ResnetImageEmbedding('resnet34')
# op.model_card = ModelCard(model_details="resnet test modelcard", training_data="use resnet test data")
# old_out = op(towhee_img)
# print(old_out.feature_vector[0])
training_config = TrainingConfig()
yaml_path = 'resnet_training_yaml.yaml'
# dump_default_yaml(yaml_path=yaml_path)
training_config.load_from_yaml(yaml_path)
# output_dir='./temp_output',
# overwrite_output_dir=True,
# epoch_num=2,
# per_gpu_train_batch_size=16,
# prediction_loss_only=True,
# metric='Accuracy'
# # device_str='cuda',
# # n_gpu=4
# )
mnist_transform = transforms.Compose([transforms.ToTensor(),
RandomResizedCrop(224),
Lambda(lambda x: x.repeat(3, 1, 1)),
transforms.Normalize(mean=[0.5], std=[0.5])])
train_data = get_dataset('mnist', transform=mnist_transform, download=True, root='data', train=True)
eval_data = get_dataset('mnist', transform=mnist_transform, download=True, root='data', train=False)
# fake_transform = transforms.Compose([transforms.ToTensor(),
# RandomResizedCrop(224),])
# train_data = get_dataset('fake', size=20, transform=fake_transform)
op.change_before_train(10)
trainer = op.setup_trainer()
# my_optimimzer = AdamW(op.get_model().parameters(), lr=0.002, betas=(0.91, 0.98), eps=1e-08, weight_decay=0.01, amsgrad=False)
# op.setup_trainer()
# trainer.add_callback()
# trainer.set_optimizer()
# op.trainer.set_optimizer(my_optimimzer)
# trainer.configs.save_to_yaml('changed_optimizer_yaml.yaml')
# my_loss = nn.BCELoss()
# trainer.set_loss(my_loss, 'my_loss111')
# trainer.configs.save_to_yaml('chaned_loss_yaml.yaml')
# op.trainer._create_optimizer()
# op.trainer.set_optimizer()
op.train(training_config, train_dataset=train_data, eval_dataset=eval_data)
# training_config.num_epoch = 3
# op.train(training_config, train_dataset=train_data, resume_checkpoint_path=training_config.output_dir + '/epoch_2')
# op.save('./test_save')
# op.load('./test_save')
# new_out = op(towhee_img)
# assert (new_out[0]!=old_out[0]).all()