towhee
/
retinaface-face-detection
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
74 lines
2.8 KiB
74 lines
2.8 KiB
3 years ago
|
# Copyright 2021 Zilliz. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from typing import NamedTuple, List
|
||
|
from PIL import Image
|
||
|
import torch
|
||
|
from torchvision import transforms
|
||
|
import sys
|
||
|
import towhee
|
||
|
from pathlib import Path
|
||
|
import numpy
|
||
|
|
||
|
from towhee.operator import Operator
|
||
|
from towhee.utils.pil_utils import to_pil
|
||
|
from timm.data import resolve_data_config
|
||
|
from timm.data.transforms_factory import create_transform
|
||
|
import os
|
||
|
|
||
|
class RetinafaceFaceDetection(Operator):
|
||
|
"""
|
||
|
Embedding extractor using efficientnet.
|
||
|
Args:
|
||
|
model_name (`string`):
|
||
|
Model name.
|
||
|
weights_path (`string`):
|
||
|
Path to local weights.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, need_crop = True, framework: str = 'pytorch') -> None:
|
||
|
super().__init__()
|
||
|
if framework == 'pytorch':
|
||
|
import importlib.util
|
||
|
path = os.path.join(str(Path(__file__).parent), 'pytorch', 'model.py')
|
||
|
opname = os.path.basename(str(Path(__file__))).split('.')[0]
|
||
|
spec = importlib.util.spec_from_file_location(opname, path)
|
||
|
module = importlib.util.module_from_spec(spec)
|
||
|
spec.loader.exec_module(module)
|
||
|
self.need_crop = need_crop
|
||
|
self.model = module.Model()
|
||
|
|
||
|
def __call__(self, image: 'towhee.types.Image') -> List[NamedTuple('Outputs', [('boxes', numpy.ndarray),
|
||
|
('keypoints', numpy.ndarray),
|
||
|
('cropped_imgs', numpy.ndarray)])]:
|
||
|
Outputs = NamedTuple('Outputs', [('boxes', numpy.ndarray), ('keypoints', numpy.ndarray), ('cropped_imgs', numpy.ndarray)])
|
||
|
img = torch.FloatTensor(numpy.asarray(to_pil(image)))
|
||
|
bboxes, keypoints = self.model(img)
|
||
|
croppeds = []
|
||
|
if self.need_crop is True:
|
||
|
h, w, _ = img.shape
|
||
|
for bbox in bboxes:
|
||
|
x1, y1, x2, y2, _ = bbox
|
||
|
x1 = max(int(x1), 0)
|
||
|
y1 = max(int(y1), 0)
|
||
|
x2 = min(int(x2), w)
|
||
|
y2 = min(int(y2), h)
|
||
|
croppeds.append(img[y1:y2, x1:x2, :].numpy())
|
||
|
outputs = []
|
||
|
|
||
|
for i in range(len(croppeds)):
|
||
|
output = Outputs(bboxes[i], keypoints[i,:], croppeds[i])
|
||
|
outputs.append(output)
|
||
|
return outputs
|