towhee
/
retinaface-face-detection
copied
6 changed files with 145 additions and 0 deletions
@ -0,0 +1,13 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
@ -0,0 +1,14 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
|
@ -0,0 +1,41 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
import os |
||||
|
|
||||
|
import torch |
||||
|
|
||||
|
from towhee.models.retina_face.retinaface import RetinaFace |
||||
|
from towhee.models.retina_face.configs import build_configs |
||||
|
from towhee.models.utils.pretrained_utils import load_pretrained_weights |
||||
|
|
||||
|
class Model: |
||||
|
""" |
||||
|
Pytorch model class |
||||
|
""" |
||||
|
def __init__(self): |
||||
|
model_name = 'cfg_mnet' |
||||
|
cfg = build_configs(model_name) |
||||
|
self._model = RetinaFace(cfg=cfg, phase='test') |
||||
|
load_pretrained_weights(self._model, 'mnet', None, os.path.dirname(__file__) + '/pytorch_retinaface_mobilenet_widerface.pth') |
||||
|
self._model.eval() |
||||
|
|
||||
|
def __call__(self, img_tensor: torch.Tensor): |
||||
|
outputs = self._model.inference(img_tensor) |
||||
|
return outputs |
||||
|
|
||||
|
def train(self): |
||||
|
""" |
||||
|
For training model |
||||
|
""" |
||||
|
pass |
Binary file not shown.
@ -0,0 +1 @@ |
|||||
|
torch |
@ -0,0 +1,73 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
|
||||
|
from typing import NamedTuple, List |
||||
|
from PIL import Image |
||||
|
import torch |
||||
|
from torchvision import transforms |
||||
|
import sys |
||||
|
import towhee |
||||
|
from pathlib import Path |
||||
|
import numpy |
||||
|
|
||||
|
from towhee.operator import Operator |
||||
|
from towhee.utils.pil_utils import to_pil |
||||
|
from timm.data import resolve_data_config |
||||
|
from timm.data.transforms_factory import create_transform |
||||
|
import os |
||||
|
|
||||
|
class RetinafaceFaceDetection(Operator): |
||||
|
""" |
||||
|
Embedding extractor using efficientnet. |
||||
|
Args: |
||||
|
model_name (`string`): |
||||
|
Model name. |
||||
|
weights_path (`string`): |
||||
|
Path to local weights. |
||||
|
""" |
||||
|
|
||||
|
def __init__(self, need_crop = True, framework: str = 'pytorch') -> None: |
||||
|
super().__init__() |
||||
|
if framework == 'pytorch': |
||||
|
import importlib.util |
||||
|
path = os.path.join(str(Path(__file__).parent), 'pytorch', 'model.py') |
||||
|
opname = os.path.basename(str(Path(__file__))).split('.')[0] |
||||
|
spec = importlib.util.spec_from_file_location(opname, path) |
||||
|
module = importlib.util.module_from_spec(spec) |
||||
|
spec.loader.exec_module(module) |
||||
|
self.need_crop = need_crop |
||||
|
self.model = module.Model() |
||||
|
|
||||
|
def __call__(self, image: 'towhee.types.Image') -> List[NamedTuple('Outputs', [('boxes', numpy.ndarray), |
||||
|
('keypoints', numpy.ndarray), |
||||
|
('cropped_imgs', numpy.ndarray)])]: |
||||
|
Outputs = NamedTuple('Outputs', [('boxes', numpy.ndarray), ('keypoints', numpy.ndarray), ('cropped_imgs', numpy.ndarray)]) |
||||
|
img = torch.FloatTensor(numpy.asarray(to_pil(image))) |
||||
|
bboxes, keypoints = self.model(img) |
||||
|
croppeds = [] |
||||
|
if self.need_crop is True: |
||||
|
h, w, _ = img.shape |
||||
|
for bbox in bboxes: |
||||
|
x1, y1, x2, y2, _ = bbox |
||||
|
x1 = max(int(x1), 0) |
||||
|
y1 = max(int(y1), 0) |
||||
|
x2 = min(int(x2), w) |
||||
|
y2 = min(int(y2), h) |
||||
|
croppeds.append(img[y1:y2, x1:x2, :].numpy()) |
||||
|
outputs = [] |
||||
|
|
||||
|
for i in range(len(croppeds)): |
||||
|
output = Outputs(bboxes[i], keypoints[i,:], croppeds[i]) |
||||
|
outputs.append(output) |
||||
|
return outputs |
Loading…
Reference in new issue