# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import NamedTuple, List from PIL import Image import torch from torchvision import transforms import sys import towhee from pathlib import Path import numpy from towhee.operator import Operator from towhee.utils.pil_utils import to_pil from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform import os class RetinafaceFaceDetection(Operator): """ Embedding extractor using efficientnet. Args: model_name (`string`): Model name. weights_path (`string`): Path to local weights. """ def __init__(self, need_crop = True, framework: str = 'pytorch') -> None: super().__init__() if framework == 'pytorch': import importlib.util path = os.path.join(str(Path(__file__).parent), 'pytorch', 'model.py') opname = os.path.basename(str(Path(__file__))).split('.')[0] spec = importlib.util.spec_from_file_location(opname, path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) self.need_crop = need_crop self.model = module.Model() def __call__(self, image: 'towhee.types.Image') -> List[NamedTuple('Outputs', [('boxes', numpy.ndarray), ('keypoints', numpy.ndarray), ('cropped_imgs', numpy.ndarray)])]: Outputs = NamedTuple('Outputs', [('boxes', numpy.ndarray), ('keypoints', numpy.ndarray), ('cropped_imgs', numpy.ndarray)]) img = torch.FloatTensor(numpy.asarray(to_pil(image))) bboxes, keypoints = self.model(img) croppeds = [] if self.need_crop is True: h, w, _ = img.shape for bbox in bboxes: x1, y1, x2, y2, _ = bbox x1 = max(int(x1), 0) y1 = max(int(y1), 0) x2 = min(int(x2), w) y2 = min(int(y2), h) croppeds.append(img[y1:y2, x1:x2, :].numpy()) outputs = [] for i in range(len(croppeds)): output = Outputs(bboxes[i], keypoints[i,:], croppeds[i]) outputs.append(output) return outputs