# Retinaface Face Detection (Pytorch) Authors: wxywb ## Overview This opertator detects faces in the images by using RetinaFace Detector[1]. It will returns the locations, five keypoints and the cropped face images from origin images. This repo is a adopataion from [2]. ## Interface ```python __call__(self, image: 'towhee.types.Image') ``` **Args:** - image: - the image to detect faces. - supported types: towhee.types.Image **Returns:** The Operator returns a tupe Tuple[('boxes', numpy.ndarray), ('keypoints', numpy.ndarray), ('cropped_imgs', numpy.ndarray)])] containing following fields: - boxes: - boxes of human faces. - data type: `numpy.ndarray` - shape: (num_faces, 4) - keypoints: - keypoints of human faces. - data type: `numpy.ndarray` - shape: (10) - cropped_imgs: - cropped face images. - data type: `numpy.ndarray` - shape: (h, w, 3) ## Requirements You can get the required python package by [requirements.txt](./requirements.txt). ## How it works The `towhee/retinaface-face-detection` Operators implents the function of face detection. The example pipeline can be found in [face-embedding-retinaface-inceptionresnetv1](https://towhee.io/towhee/face-embedding-retinaface-inceptionresnetv1) ## Reference [1]. https://arxiv.org/abs/1905.00641 [2]. https://github.com/biubug6/Pytorch_Retinaface