logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

48 lines
1.7 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import torch
from typing import NamedTuple
from pathlib import Path
import numpy
import os
from towhee.operator import Operator
import warnings
warnings.filterwarnings("ignore")
class TorchVggish(Operator):
"""
"""
def __init__(self, framework: str = 'pytorch', weights_path: str=None) -> None:
super().__init__()
if framework == 'pytorch':
import importlib.util
path = os.path.join(str(Path(__file__).parent), 'pytorch', 'model.py')
opname = os.path.basename(str(Path(__file__))).split('.')[0]
spec = importlib.util.spec_from_file_location(opname, path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
self.model = module.Model(weights_path)
def __call__(self, audio_path: str) -> NamedTuple('Outputs', [('embs', numpy.ndarray)]):
audio_tensors = self.model.preprocess(audio_path)
features = self.model(audio_tensors)
Outputs = NamedTuple('Outputs', [('embs', numpy.ndarray)])
return Outputs(features.detach().numpy())