towhee
/
torch-vggish
copied
10 changed files with 177 additions and 82 deletions
@ -1 +0,0 @@ |
|||
vggish.pth filter=lfs diff=lfs merge=lfs -text |
@ -1,24 +0,0 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
import os |
|||
|
|||
# For requirements. |
|||
try: |
|||
import timm |
|||
except ModuleNotFoundError: |
|||
os.system('pip install timm') |
|||
|
|||
from timm.data import resolve_data_config |
|||
from timm.data.transforms_factory import create_transform |
@ -1,51 +0,0 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
from torch import nn |
|||
import torch |
|||
import sys |
|||
from pathlib import Path |
|||
|
|||
from towhee.models.vggish.torch_vggish import VGG |
|||
|
|||
sys.path.append(str(Path(__file__).parent)) |
|||
|
|||
import vggish_input |
|||
|
|||
class Model(nn.Module): |
|||
""" |
|||
PyTorch model class |
|||
""" |
|||
def __init__(self, weights_path: str=None): |
|||
super().__init__() |
|||
self._model = VGG() |
|||
if not weights_path: |
|||
path = str(Path(__file__).parent) |
|||
weights_path = path + '/vggish.pth' |
|||
state_dict = torch.load(weights_path, map_location=torch.device('cpu')) |
|||
self._model.load_state_dict(state_dict) |
|||
self._model.eval() |
|||
|
|||
def forward(self, x): |
|||
return self._model(x) |
|||
|
|||
def preprocess(self, audio_path: str): |
|||
audio_tensors = vggish_input.wavfile_to_examples(audio_path) |
|||
return audio_tensors |
|||
|
|||
def train(self): |
|||
""" |
|||
For training model |
|||
""" |
|||
pass |
@ -0,0 +1,84 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
import logging |
|||
import warnings |
|||
|
|||
import os |
|||
import sys |
|||
import numpy |
|||
from pathlib import Path |
|||
from typing import Union |
|||
|
|||
import torch |
|||
|
|||
from towhee.operator.base import NNOperator |
|||
from towhee.models.vggish.torch_vggish import VGG |
|||
from towhee import register |
|||
|
|||
sys.path.append(str(Path(__file__).parent)) |
|||
import vggish_input |
|||
|
|||
warnings.filterwarnings('ignore') |
|||
log = logging.getLogger() |
|||
|
|||
|
|||
@register(output_schema=['vec']) |
|||
class Vggish(NNOperator): |
|||
""" |
|||
""" |
|||
|
|||
def __init__(self, weights_path: str = None, framework: str = 'pytorch') -> None: |
|||
super().__init__(framework=framework) |
|||
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|||
self.model = VGG() |
|||
if not weights_path: |
|||
path = str(Path(__file__).parent) |
|||
weights_path = os.path.join(path, 'vggish.pth') |
|||
state_dict = torch.load(weights_path, map_location=torch.device('cpu')) |
|||
self.model.load_state_dict(state_dict) |
|||
self.model.eval() |
|||
self.model.to(self.device) |
|||
|
|||
def __call__(self, audio: Union[str, numpy.ndarray], sr: int = None) -> numpy.ndarray: |
|||
audio_tensors = self.preprocess(audio, sr).to(self.device) |
|||
features = self.model(audio_tensors) |
|||
outs = features.to("cpu") |
|||
return outs.detach().numpy() |
|||
|
|||
def preprocess(self, audio: Union[str, numpy.ndarray], sr: int = None): |
|||
if isinstance(audio, str): |
|||
audio_tensors = vggish_input.wavfile_to_examples(audio) |
|||
elif isinstance(audio, numpy.ndarray): |
|||
try: |
|||
audio = audio.transpose() |
|||
audio_tensors = vggish_input.waveform_to_examples(audio, sr, return_tensor=True) |
|||
except Exception as e: |
|||
log.error("Fail to load audio data.") |
|||
raise e |
|||
else: |
|||
log.error(f"Invalid input audio: {type(audio)}") |
|||
return audio_tensors |
|||
|
|||
|
|||
# if __name__ == '__main__': |
|||
# encoder = Vggish() |
|||
# |
|||
# # audio_path = '/path/to/audio' |
|||
# # vec = encoder(audio_path) |
|||
# |
|||
# audio_data = numpy.zeros((2, 441344)) |
|||
# sample_rate = 44100 |
|||
# vec = encoder(audio_data, sample_rate) |
|||
# print(vec) |
@ -0,0 +1,83 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
import logging |
|||
import warnings |
|||
|
|||
import os |
|||
import sys |
|||
import numpy |
|||
from pathlib import Path |
|||
from typing import Union, List, NamedTuple |
|||
|
|||
import torch |
|||
|
|||
from towhee.operator.base import NNOperator |
|||
from towhee.models.vggish.torch_vggish import VGG |
|||
from towhee import register |
|||
|
|||
sys.path.append(str(Path(__file__).parent)) |
|||
import vggish_input |
|||
|
|||
warnings.filterwarnings('ignore') |
|||
log = logging.getLogger() |
|||
|
|||
|
|||
AudioOutput = NamedTuple('AudioOutput', [('vec', 'ndarray')]) |
|||
|
|||
|
|||
class Vggish(NNOperator): |
|||
""" |
|||
""" |
|||
|
|||
def __init__(self, weights_path: str = None, framework: str = 'pytorch') -> None: |
|||
super().__init__(framework=framework) |
|||
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|||
self.model = VGG() |
|||
if not weights_path: |
|||
path = str(Path(__file__).parent) |
|||
weights_path = os.path.join(path, 'vggish.pth') |
|||
state_dict = torch.load(weights_path, map_location=torch.device('cpu')) |
|||
self.model.load_state_dict(state_dict) |
|||
self.model.eval() |
|||
self.model.to(self.device) |
|||
|
|||
def __call__(self, datas: List[NamedTuple('data', [('audio', 'ndarray'), ('sample_rate', 'int')])]) -> numpy.ndarray: |
|||
audios = numpy.stack([item.audio for item in datas]) |
|||
sr = datas[0].sample_rate |
|||
audio_array = numpy.reshape(audios, (-1, 2)) |
|||
audio_tensors = self.preprocess(audio_array, sr).to(self.device) |
|||
features = self.model(audio_tensors) |
|||
outs = features.to("cpu") |
|||
return [AudioOutput(outs.detach().numpy())] |
|||
|
|||
def preprocess(self, audio: Union[str, numpy.ndarray], sr: int = None): |
|||
if audio.dtype == numpy.int32: |
|||
samples = audio / 2147483648.0 |
|||
elif audio.dtype == numpy.int16: |
|||
samples = audio / 32768.0 |
|||
return vggish_input.waveform_to_examples(samples, sr, return_tensor=True) |
|||
|
|||
|
|||
|
|||
# if __name__ == '__main__': |
|||
# encoder = Vggish() |
|||
# |
|||
# # audio_path = '/path/to/audio' |
|||
# # vec = encoder(audio_path) |
|||
# |
|||
# audio_data = numpy.zeros((2, 441344)) |
|||
# sample_rate = 44100 |
|||
# vec = encoder(audio_data, sample_rate) |
|||
# print(vec) |
Loading…
Reference in new issue