logo
Browse Source

Remove torchaudio

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
main
Jael Gu 3 years ago
parent
commit
ec892832d2
  1. 2
      torch_vggish.py
  2. 16
      vggish_input.py

2
torch_vggish.py

@ -54,7 +54,7 @@ class Vggish(NNOperator):
self.model.to(self.device)
def __call__(self, datas: List[NamedTuple('data', [('audio', 'ndarray'), ('sample_rate', 'int')])]) -> numpy.ndarray:
audios = numpy.stack([item.audio for item in datas])
audios = numpy.hstack([item.audio for item in datas])
sr = datas[0].sample_rate
audio_array = numpy.reshape(audios, (-1, 1))
audio_tensors = self.preprocess(audio_array, sr).to(self.device)

16
vggish_input.py

@ -23,8 +23,6 @@ import resampy
import mel_features
import vggish_params
import torchaudio
def waveform_to_examples(data, sample_rate, return_tensor=True):
"""Converts audio waveform into an array of examples for VGGish.
@ -80,17 +78,3 @@ def waveform_to_examples(data, sample_rate, return_tensor=True):
return log_mel_examples
def wavfile_to_examples(wav_file, return_tensor=True):
"""Convenience wrapper around waveform_to_examples() for a common WAV format.
Args:
wav_file: String path to a file, or a file-like object. The file
is assumed to contain WAV audio data with signed 16-bit PCM samples.
torch: Return data as a Pytorch tensor ready for VGGish
Returns:
See waveform_to_examples.
"""
data, sr = torchaudio.load(wav_file)
wav_data = data.detach().numpy().transpose()
return waveform_to_examples(wav_data, sr, return_tensor)

Loading…
Cancel
Save