Browse Source
        
      
      Remove torchaudio
      
        Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
      
      
        main
      
      
     
    
    
    
	
		
			
				 2 changed files with 
1 additions and 
17 deletions
			 
			
		 
		
			
				- 
					
					
					 
					torch_vggish.py
				
 
			
				- 
					
					
					 
					vggish_input.py
				
 
			
		
		
			
			
			
			
			
			
				
				
					
						
							
								
									
	
		
			
				
					| 
						
						
							
								
							
						
						
					 | 
				
				 | 
				
					@ -54,7 +54,7 @@ class Vggish(NNOperator): | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        self.model.to(self.device) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    def __call__(self, datas: List[NamedTuple('data', [('audio', 'ndarray'), ('sample_rate', 'int')])]) -> numpy.ndarray: | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        audios = numpy.stack([item.audio for item in datas]) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        audios = numpy.hstack([item.audio for item in datas]) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        sr = datas[0].sample_rate | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        audio_array = numpy.reshape(audios, (-1, 1)) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					        audio_tensors = self.preprocess(audio_array, sr).to(self.device) | 
				
			
			
		
	
	
		
			
				
					| 
						
							
								
							
						
						
						
					 | 
				
				 | 
				
					
  | 
				
			
			
		
	
								
							
						
					 
					
				 
			 
		
			
			
			
			
			
			
				
				
					
						
							
								
									
	
		
			
				
					| 
						
						
							
								
							
						
						
					 | 
				
				 | 
				
					@ -23,8 +23,6 @@ import resampy | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					import mel_features | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					import vggish_params | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					import torchaudio | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					def waveform_to_examples(data, sample_rate, return_tensor=True): | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    """Converts audio waveform into an array of examples for VGGish. | 
				
			
			
		
	
	
		
			
				
					| 
						
							
								
							
						
						
							
								
							
						
						
					 | 
				
				 | 
				
					@ -80,17 +78,3 @@ def waveform_to_examples(data, sample_rate, return_tensor=True): | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    return log_mel_examples | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					def wavfile_to_examples(wav_file, return_tensor=True): | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    """Convenience wrapper around waveform_to_examples() for a common WAV format. | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					  Args: | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    wav_file: String path to a file, or a file-like object. The file | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    is assumed to contain WAV audio data with signed 16-bit PCM samples. | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    torch: Return data as a Pytorch tensor ready for VGGish | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					  Returns: | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    See waveform_to_examples. | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					  """ | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    data, sr = torchaudio.load(wav_file) | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    wav_data = data.detach().numpy().transpose() | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				
					    return waveform_to_examples(wav_data, sr, return_tensor) | 
				
			
			
		
	
	
		
			
				
					| 
						
							
								
							
						
						
						
					 | 
				
				 | 
				
					
  |