# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import torch from typing import NamedTuple from pathlib import Path import numpy import os from towhee.operator import Operator import warnings warnings.filterwarnings("ignore") class TorchVggish(Operator): """ """ def __init__(self, framework: str = 'pytorch', weights_path: str=None) -> None: super().__init__() if framework == 'pytorch': import importlib.util path = os.path.join(str(Path(__file__).parent), 'pytorch', 'model.py') opname = os.path.basename(str(Path(__file__))).split('.')[0] spec = importlib.util.spec_from_file_location(opname, path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) self.model = module.Model(weights_path) def __call__(self, audio_path: str) -> NamedTuple('Outputs', [('embs', numpy.ndarray)]): audio_tensors = self.model.preprocess(audio_path) features = self.model._model(audio_tensors) Outputs = NamedTuple('Outputs', [('embs', numpy.ndarray)]) return Outputs(features.detach().numpy())