logo
Browse Source

Add transform-image op

main
shiyu22 3 years ago
committed by Kaiyuan Hu
parent
commit
e65ab7092a
  1. 35
      .gitattributes
  2. 21
      README.md
  3. 13
      __init__.py
  4. 4
      requirements.txt
  5. BIN
      test_data/test.jpg
  6. 29
      test_transform_image.py
  7. 63
      transform_image.py
  8. 13
      transform_image.yaml

35
.gitattributes

@ -0,0 +1,35 @@
# .gitattributes
# Source files
# ============
*.pxd text diff=python
*.py text diff=python
*.py3 text diff=python
*.pyw text diff=python
*.pyx text diff=python
*.pyz text diff=python
*.pyi text diff=python
# Binary files
# ============
*.db binary
*.p binary
*.pkl binary
*.pickle binary
*.pyc binary export-ignore
*.pyo binary export-ignore
*.pyd binary
# Jupyter notebook
*.ipynb text
# Model files
*.bin.* filter=lfs diff=lfs merge=lfs -text
*.lfs.* filter=lfs diff=lfs merge=lfs -text
*.bin filter=lfs diff=lfs merge=lfs -text
*.h5 filter=lfs diff=lfs merge=lfs -text
*.tflite filter=lfs diff=lfs merge=lfs -text
*.tar.gz filter=lfs diff=lfs merge=lfs -text
*.ot filter=lfs diff=lfs merge=lfs -text
*.onnx filter=lfs diff=lfs merge=lfs -text
*.msgpack filter=lfs diff=lfs merge=lfs -text

21
README.md

@ -1,3 +1,20 @@
# transform-image
# Transform Image Operator
This is another test repo
Authors: name or github-name(email)
## Overview
Introduce the functions of op and the model used.
## Interface
The interface of all the functions in op. (input & output)
## How to use
- Requirements from requirements.txt
- How it works in some typical pipelines and the yaml example.
## Reference
Model link.

13
__init__.py

@ -0,0 +1,13 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

4
requirements.txt

@ -0,0 +1,4 @@
torch>=1.2.0
torchvision>=0.4.0
numpy>=1.19.5
pillow>=8.3.1

BIN
test_data/test.jpg

Binary file not shown.

After

Width:  |  Height:  |  Size: 178 KiB

29
test_transform_image.py

@ -0,0 +1,29 @@
import unittest
from PIL import Image
from torchvision import transforms
from transform_image import TransformImage
class TestTransformImage(unittest.TestCase):
test_img = './test_data/test.jpg'
test_img = Image.open(test_img)
tfms = transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
img1 = tfms(test_img).unsqueeze(0)
def test_transform_image(self):
op = TransformImage(256)
outputs = op(self.test_img)
print("The output tyep of operator:", type(outputs.img_transformed))
c = (self.img1.numpy() == outputs.img_transformed.numpy())
self.assertEqual(c.all(), True)
if __name__ == '__main__':
unittest.main()

63
transform_image.py

@ -0,0 +1,63 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import NamedTuple, Union
import torch
import numpy as np
from PIL import Image
from torchvision import transforms
from towhee.operator import Operator
class TransformImage(Operator):
"""
Use PyTorch to transform an image (resize, crop, normalize, etc...)
Args:
size (`int`):
Image size to use. A resize to `size x size` followed by center crop and
image normalization will be done.
"""
def __init__(self, size: int) -> None:
super().__init__()
# user defined transform
self.tfms = transforms.Compose(
[
transforms.Resize(size),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
def __call__(self, img_tensor: Union[np.ndarray, Image.Image, torch.Tensor, str]) -> NamedTuple('Outputs', [('img_transformed', torch.Tensor)]):
"""
Call it when use this class.
Args:
img_tensor (`Union[np.ndarray, Image.Image, torch.Tensor, str]`):
The image data to be normalized, you can try one of the
four formats: np.ndarray, Image.Image, torch.Tensor and str.
Returns:
(`torch.Tensor`)
The normalized image tensor.
"""
if isinstance(img_tensor, str):
img_tensor = Image.open(img_tensor)
if isinstance(img_tensor, Image.Image):
img_tensor = img_tensor.convert('RGB')
Outputs = NamedTuple('Outputs', [('img_transformed', torch.Tensor)])
return Outputs(self.tfms(img_tensor).unsqueeze(0))

13
transform_image.yaml

@ -0,0 +1,13 @@
name: 'transform-image'
labels:
recommended_framework: pytorch1.2.0
class: image-transform
others:
operator: 'towhee/transform-image'
init:
size: int
call:
input:
img_tensor: Union[np.ndarray, Image.Image, torch.Tensor, str]
output:
img_transformed: torch.Tensor
Loading…
Cancel
Save