|
@ -20,12 +20,12 @@ from PIL import Image |
|
|
import torch |
|
|
import torch |
|
|
from timm.data import resolve_data_config |
|
|
from timm.data import resolve_data_config |
|
|
from timm.data.transforms_factory import create_transform |
|
|
from timm.data.transforms_factory import create_transform |
|
|
|
|
|
|
|
|
|
|
|
import numpy |
|
|
|
|
|
|
|
|
from towhee.operator import Operator |
|
|
from towhee.operator import Operator |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class VisionTransformerEmbeddingOperator(Operator): |
|
|
|
|
|
|
|
|
class VitImageEmbedding(Operator): |
|
|
""" |
|
|
""" |
|
|
Embedding extractor using ViT. |
|
|
Embedding extractor using ViT. |
|
|
Args: |
|
|
Args: |
|
@ -40,13 +40,13 @@ class VisionTransformerEmbeddingOperator(Operator): |
|
|
super().__init__() |
|
|
super().__init__() |
|
|
sys.path.append(str(Path(__file__).parent)) |
|
|
sys.path.append(str(Path(__file__).parent)) |
|
|
if framework == 'pytorch': |
|
|
if framework == 'pytorch': |
|
|
from vit_embedding.pytorch.model import Model |
|
|
|
|
|
|
|
|
from pytorch.model import Model |
|
|
self.model = Model(model_name, weights_path) |
|
|
self.model = Model(model_name, weights_path) |
|
|
config = resolve_data_config({}, model=self.model._model) |
|
|
config = resolve_data_config({}, model=self.model._model) |
|
|
self.tfms = create_transform(**config) |
|
|
self.tfms = create_transform(**config) |
|
|
|
|
|
|
|
|
def __call__(self, img_path: str) -> NamedTuple('Outputs', [('embedding', torch.Tensor)]): |
|
|
|
|
|
Outputs = NamedTuple('Outputs', [('embedding', torch.Tensor)]) |
|
|
|
|
|
|
|
|
def __call__(self, img_path: str) -> NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]): |
|
|
|
|
|
Outputs = NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]) |
|
|
img = self.tfms(Image.open(img_path)).unsqueeze(0) |
|
|
img = self.tfms(Image.open(img_path)).unsqueeze(0) |
|
|
features = self.model(img) |
|
|
features = self.model(img) |
|
|
return Outputs(features.flatten().detach().numpy()) |
|
|
return Outputs(features.flatten().detach().numpy()) |
|
|