logo
Browse Source

remove get_model and pytorch folder.

main
ChengZi 3 years ago
parent
commit
f50401944b
  1. 24
      pytorch/__init__.py
  2. 42
      pytorch/model.py
  3. 46
      vit_image_embedding.py

24
pytorch/__init__.py

@ -1,24 +0,0 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
# For requirements.
try:
import timm
except ModuleNotFoundError:
os.system('pip install timm')
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform

42
pytorch/model.py

@ -1,42 +0,0 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch.nn import Linear
from torch import nn
import timm
class Model():
"""
PyTorch model class
"""
def __init__(self, model_name: str, weights_path: str, num_classes=1000):
super().__init__()
if weights_path:
self._model = timm.create_model(model_name, checkpoint_path=weights_path, num_classes=num_classes)
else:
self._model = timm.create_model(model_name, pretrained=True, num_classes=num_classes)
self._model.eval()
def __call__(self, img_tensor: torch.Tensor):
self._model.eval()
features = self._model.forward_features(img_tensor)
if features.dim() == 4: # if the shape of feature map is [N, C, H, W], where H > 1 and W > 1
global_pool = nn.AdaptiveAvgPool2d(1)
features = global_pool(features)
return features.flatten().detach().numpy()

46
vit_image_embedding.py

@ -13,23 +13,21 @@
# limitations under the License.
import sys
from typing import NamedTuple
from pathlib import Path
from PIL import Image
import timm
import torch
from torch import nn as nn
import numpy
import os
from towhee.operator import Operator, NNOperator
from torch import nn as nn
from typing import NamedTuple
from towhee.operator import NNOperator
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from towhee.utils.pil_utils import to_pil
import warnings
warnings.filterwarnings("ignore")
class VitImageEmbedding(NNOperator):
"""
Embedding extractor using ViT.
@ -42,23 +40,25 @@ class VitImageEmbedding(NNOperator):
def __init__(self, model_name: str = 'vit_large_patch16_224', num_classes: int = 1000,
framework: str = 'pytorch', weights_path: str = None) -> None:
super().__init__()
if framework == 'pytorch':
import importlib.util
path = os.path.join(str(Path(__file__).parent), 'pytorch', 'model.py')
opname = os.path.basename(str(Path(__file__))).split('.')[0]
spec = importlib.util.spec_from_file_location(opname, path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
self.model = module.Model(model_name, weights_path, num_classes=num_classes)
config = resolve_data_config({}, model=self.model._model)
super().__init__(framework=framework)
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
if weights_path:
self.model = timm.create_model(model_name, checkpoint_path=weights_path, num_classes=num_classes)
else:
self.model = timm.create_model(model_name, pretrained=True, num_classes=num_classes)
self.model.eval()
config = resolve_data_config({}, model=self.model)
self.tfms = create_transform(**config)
def __call__(self, image: 'towhee.types.Image') -> NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]):
img = self.tfms(to_pil(image)).unsqueeze(0)
img_tensor = self.tfms(to_pil(image)).unsqueeze(0)
Outputs = NamedTuple('Outputs', [('feature_vector', numpy.ndarray)])
features = self.model(img)
self.model.to(self.device)
self.model.eval()
features = self.model.forward_features(img_tensor)
if features.dim() == 4: # if the shape of feature map is [N, C, H, W], where H > 1 and W > 1
global_pool = nn.AdaptiveAvgPool2d(1)
features = global_pool(features)
features = features.to('cpu')
features = features.flatten().detach().numpy()
return Outputs(features)
def get_model(self) -> nn.Module:
return self.model._model
Loading…
Cancel
Save