# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import timm import torch import numpy from torch import nn as nn from typing import NamedTuple from towhee.operator import NNOperator from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from towhee.utils.pil_utils import to_pil import warnings warnings.filterwarnings("ignore") class VitImageEmbedding(NNOperator): """ Embedding extractor using ViT. Args: model_name (`string`): Model name. weights_path (`string`): Path to local weights. """ def __init__(self, model_name: str = 'vit_large_patch16_224', num_classes: int = 1000, framework: str = 'pytorch', weights_path: str = None) -> None: super().__init__(framework=framework) self.device = 'cuda' if torch.cuda.is_available() else 'cpu' if weights_path: self.model = timm.create_model(model_name, checkpoint_path=weights_path, num_classes=num_classes) else: self.model = timm.create_model(model_name, pretrained=True, num_classes=num_classes) self.model.eval() config = resolve_data_config({}, model=self.model) self.tfms = create_transform(**config) def __call__(self, image: 'towhee.types.Image') -> NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]): img_tensor = self.tfms(to_pil(image)).unsqueeze(0) Outputs = NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]) self.model.to(self.device) self.model.eval() features = self.model.forward_features(img_tensor) if features.dim() == 4: # if the shape of feature map is [N, C, H, W], where H > 1 and W > 1 global_pool = nn.AdaptiveAvgPool2d(1) features = global_pool(features) features = features.to('cpu') features = features.flatten().detach().numpy() return Outputs(features)