# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from typing import NamedTuple from pathlib import Path from PIL import Image import torch import numpy import os from towhee.operator import Operator from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from towhee.utils.pil_utils import to_pil import warnings warnings.filterwarnings("ignore") class VitImageEmbedding(Operator): """ Embedding extractor using ViT. Args: model_name (`string`): Model name. weights_path (`string`): Path to local weights. """ def __init__(self, model_name: str = 'vit_large_patch16_224', framework: str = 'pytorch', weights_path: str = None) -> None: super().__init__() if framework == 'pytorch': import importlib.util path = os.path.join(str(Path(__file__).parent), 'pytorch', 'model.py') opname = os.path.basename(str(Path(__file__))).split('.')[0] spec = importlib.util.spec_from_file_location(opname, path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) self.model = module.Model(model_name, weights_path) config = resolve_data_config({}, model=self.model._model) self.tfms = create_transform(**config) def __call__(self, image: 'towhee.types.Image') -> NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]): img = self.tfms(to_pil(image)).unsqueeze(0) Outputs = NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]) features = self.model(img) return Outputs(features.flatten().detach().numpy())