logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

52 lines
1.8 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from typing import NamedTuple
from pathlib import Path
from PIL import Image
import torch
import numpy
from towhee.operator import Operator
class VitImageEmbedding(Operator):
"""
Embedding extractor using ViT.
Args:
model_name (`string`):
Model name.
weights_path (`string`):
Path to local weights.
"""
def __init__(self, model_name: str = 'vit_large_patch16_224',
framework: str = 'pytorch', weights_path: str = None) -> None:
super().__init__()
sys.path.append(str(Path(__file__).parent))
if framework == 'pytorch':
import pytorch
from pytorch.model import Model
self.model = Model(model_name, weights_path)
config = pytorch.resolve_data_config({}, model=self.model._model)
self.tfms = pytorch.create_transform(**config)
def __call__(self, img_path: str) -> NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]):
Outputs = NamedTuple('Outputs', [('feature_vector', numpy.ndarray)])
img = self.tfms(Image.open(img_path)).unsqueeze(0)
features = self.model(img)
return Outputs(features.flatten().detach().numpy())