animegan-style-transfer
copied
9 changed files with 187 additions and 0 deletions
@ -0,0 +1,36 @@ |
|||||
|
import os |
||||
|
import numpy |
||||
|
from pathlib import Path |
||||
|
from typing import NamedTuple |
||||
|
from torchvision import transforms |
||||
|
|
||||
|
from towhee.operator import Operator |
||||
|
from towhee.utils.pil_utils import to_pil |
||||
|
from towhee.types.image import Image |
||||
|
|
||||
|
import warnings |
||||
|
warnings.filterwarnings("ignore") |
||||
|
|
||||
|
class AnimeganStyleTransfer(Operator): |
||||
|
""" |
||||
|
PyTorch model for image embedding. |
||||
|
""" |
||||
|
def __init__(self, model_name: str, framework: str = 'pytorch') -> None: |
||||
|
super().__init__() |
||||
|
if framework == 'pytorch': |
||||
|
import importlib.util |
||||
|
path = os.path.join(str(Path(__file__).parent), 'pytorch', 'model.py') |
||||
|
opname = os.path.basename(str(Path(__file__))).split('.')[0] |
||||
|
spec = importlib.util.spec_from_file_location(opname, path) |
||||
|
module = importlib.util.module_from_spec(spec) |
||||
|
spec.loader.exec_module(module) |
||||
|
self.model = module.Model(model_name) |
||||
|
self.tfms = transforms.Compose([ |
||||
|
transforms.ToTensor() |
||||
|
]) |
||||
|
|
||||
|
def __call__(self, image: 'towhee.types.Image') -> NamedTuple('Outputs', [('styled_image', numpy.ndarray)]): |
||||
|
img = self.tfms(to_pil(image)).unsqueeze(0) |
||||
|
styled_image = self.model(img) |
||||
|
Outputs = NamedTuple('Outputs', [('styled_image', numpy.ndarray)]) |
||||
|
return Outputs(styled_image) |
@ -0,0 +1,133 @@ |
|||||
|
from torch import nn, load, Tensor |
||||
|
import os |
||||
|
from pathlib import Path |
||||
|
|
||||
|
|
||||
|
class ConvNormLReLU(nn.Sequential): |
||||
|
def __init__(self, in_ch, out_ch, kernel_size=3, stride=1, padding=1, pad_mode="reflect", groups=1, bias=False): |
||||
|
|
||||
|
pad_layer = { |
||||
|
"zero": nn.ZeroPad2d, |
||||
|
"same": nn.ReplicationPad2d, |
||||
|
"reflect": nn.ReflectionPad2d, |
||||
|
} |
||||
|
if pad_mode not in pad_layer: |
||||
|
raise NotImplementedError |
||||
|
|
||||
|
super(ConvNormLReLU, self).__init__( |
||||
|
pad_layer[pad_mode](padding), |
||||
|
nn.Conv2d(in_ch, out_ch, kernel_size=kernel_size, stride=stride, padding=0, groups=groups, bias=bias), |
||||
|
nn.GroupNorm(num_groups=1, num_channels=out_ch, affine=True), |
||||
|
nn.LeakyReLU(0.2, inplace=True) |
||||
|
) |
||||
|
|
||||
|
|
||||
|
class InvertedResBlock(nn.Module): |
||||
|
def __init__(self, in_ch, out_ch, expansion_ratio=2): |
||||
|
super(InvertedResBlock, self).__init__() |
||||
|
|
||||
|
self.use_res_connect = in_ch == out_ch |
||||
|
bottleneck = int(round(in_ch*expansion_ratio)) |
||||
|
layers = [] |
||||
|
if expansion_ratio != 1: |
||||
|
layers.append(ConvNormLReLU(in_ch, bottleneck, kernel_size=1, padding=0)) |
||||
|
|
||||
|
# dw |
||||
|
layers.append(ConvNormLReLU(bottleneck, bottleneck, groups=bottleneck, bias=True)) |
||||
|
# pw |
||||
|
layers.append(nn.Conv2d(bottleneck, out_ch, kernel_size=1, padding=0, bias=False)) |
||||
|
layers.append(nn.GroupNorm(num_groups=1, num_channels=out_ch, affine=True)) |
||||
|
|
||||
|
self.layers = nn.Sequential(*layers) |
||||
|
|
||||
|
def forward(self, input): |
||||
|
out = self.layers(input) |
||||
|
if self.use_res_connect: |
||||
|
out = input + out |
||||
|
return out |
||||
|
|
||||
|
|
||||
|
class Generator(nn.Module): |
||||
|
def __init__(self, ): |
||||
|
super().__init__() |
||||
|
|
||||
|
self.block_a = nn.Sequential( |
||||
|
ConvNormLReLU(3, 32, kernel_size=7, padding=3), |
||||
|
ConvNormLReLU(32, 64, stride=2, padding=(0,1,0,1)), |
||||
|
ConvNormLReLU(64, 64) |
||||
|
) |
||||
|
|
||||
|
self.block_b = nn.Sequential( |
||||
|
ConvNormLReLU(64, 128, stride=2, padding=(0,1,0,1)), |
||||
|
ConvNormLReLU(128, 128) |
||||
|
) |
||||
|
|
||||
|
self.block_c = nn.Sequential( |
||||
|
ConvNormLReLU(128, 128), |
||||
|
InvertedResBlock(128, 256, 2), |
||||
|
InvertedResBlock(256, 256, 2), |
||||
|
InvertedResBlock(256, 256, 2), |
||||
|
InvertedResBlock(256, 256, 2), |
||||
|
ConvNormLReLU(256, 128), |
||||
|
) |
||||
|
|
||||
|
self.block_d = nn.Sequential( |
||||
|
ConvNormLReLU(128, 128), |
||||
|
ConvNormLReLU(128, 128) |
||||
|
) |
||||
|
|
||||
|
self.block_e = nn.Sequential( |
||||
|
ConvNormLReLU(128, 64), |
||||
|
ConvNormLReLU(64, 64), |
||||
|
ConvNormLReLU(64, 32, kernel_size=7, padding=3) |
||||
|
) |
||||
|
|
||||
|
self.out_layer = nn.Sequential( |
||||
|
nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0, bias=False), |
||||
|
nn.Tanh() |
||||
|
) |
||||
|
|
||||
|
def forward(self, input, align_corners=True): |
||||
|
out = self.block_a(input) |
||||
|
half_size = out.size()[-2:] |
||||
|
out = self.block_b(out) |
||||
|
out = self.block_c(out) |
||||
|
|
||||
|
if align_corners: |
||||
|
out = nn.functional.interpolate(out, half_size, mode="bilinear", align_corners=True) |
||||
|
else: |
||||
|
out = nn.functional.interpolate(out, scale_factor=2, mode="bilinear", align_corners=False) |
||||
|
out = self.block_d(out) |
||||
|
|
||||
|
if align_corners: |
||||
|
out = nn.functional.interpolate(out, input.size()[-2:], mode="bilinear", align_corners=True) |
||||
|
else: |
||||
|
out = nn.functional.interpolate(out, scale_factor=2, mode="bilinear", align_corners=False) |
||||
|
out = self.block_e(out) |
||||
|
|
||||
|
out = self.out_layer(out) |
||||
|
return out |
||||
|
|
||||
|
class Model(): |
||||
|
def __init__(self, model_name) -> None: |
||||
|
self._model = Generator() |
||||
|
path = os.path.join(str(Path(__file__).parent), 'weights', model_name + '.pt') |
||||
|
ckpt = load(path) |
||||
|
self._model.load_state_dict(ckpt) |
||||
|
self._model.eval() |
||||
|
|
||||
|
|
||||
|
def __call__(self, img_tensor: Tensor): |
||||
|
img_tensor = img_tensor * 2 - 1 |
||||
|
out = self._model(img_tensor).detach() |
||||
|
out = out.squeeze(0).clip(-1, 1) * 0.5 + 0.5 |
||||
|
return out.numpy() |
||||
|
|
||||
|
def train(self): |
||||
|
""" |
||||
|
For training model |
||||
|
""" |
||||
|
pass |
||||
|
|
||||
|
|
||||
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading…
Reference in new issue