|
|
|
# Copyright 2021 Zilliz. All rights reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
|
|
|
|
from typing import NamedTuple
|
|
|
|
|
|
|
|
import numpy
|
|
|
|
import torch
|
|
|
|
import torchvision
|
|
|
|
from torch.nn import Linear
|
|
|
|
from timm.models.resnet import ResNet
|
|
|
|
|
|
|
|
# ResNet.
|
|
|
|
from pytorch.embedding_extractor import EmbeddingExtractor
|
|
|
|
#todo:后面改成用towhee.models.embedding.下面的EmbeddingExtractor,这个现在在origin main分支上可用,但在train分支上不可用
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Model():
|
|
|
|
"""
|
|
|
|
PyTorch model class
|
|
|
|
"""
|
|
|
|
def __init__(self, model_name):
|
|
|
|
super().__init__()
|
|
|
|
model_func = getattr(torchvision.models, model_name)
|
|
|
|
self._model = model_func(pretrained=True)
|
|
|
|
state_dict = None
|
|
|
|
if model_name == 'resnet101':
|
|
|
|
state_dict = torch.hub.load_state_dict_from_url(
|
|
|
|
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet101_a1h-36d3f2aa.pth')
|
|
|
|
if model_name == 'resnet50':
|
|
|
|
state_dict = torch.hub.load_state_dict_from_url(
|
|
|
|
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1_0-14fe96d1.pth')
|
|
|
|
if state_dict:
|
|
|
|
self._model.load_state_dict(state_dict)
|
|
|
|
|
|
|
|
# self._model.fc = torch.nn.Identity()
|
|
|
|
self._model.eval()
|
|
|
|
self.ex = EmbeddingExtractor(self._model)
|
|
|
|
# self.ex.disp_modules(full=True)
|
|
|
|
self.ex.register('avgpool')
|
|
|
|
|
|
|
|
def __call__(self, img_tensor: torch.Tensor):
|
|
|
|
self.ex.emb_out.clear()
|
|
|
|
self._model(img_tensor)
|
|
|
|
# return self.fc_input[0]
|
|
|
|
return self.ex.emb_out.embeddings[0]
|
|
|
|
# return self._model(img_tensor).flatten().detach().numpy() #todo
|
|
|
|
|
|
|
|
def create_classifier(self, num_classes):
|
|
|
|
self._model.fc = Linear(self._model.fc.in_features, num_classes, bias=True)
|
|
|
|
# self._model.classifier.register_forward_hook(self._forward_hook)
|
|
|
|
|
|
|
|
# def train(self):
|
|
|
|
# """
|
|
|
|
# For training model
|
|
|
|
# """
|
|
|
|
# pass
|