logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

69 lines
2.5 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import NamedTuple
import numpy
import torch
import torchvision
from torch.nn import Linear
from timm.models.resnet import ResNet
# ResNet.
from pytorch.embedding_extractor import EmbeddingExtractor
#todo:后面改成用towhee.models.embedding.下面的EmbeddingExtractor,这个现在在origin main分支上可用,但在train分支上不可用
class Model():
"""
PyTorch model class
"""
def __init__(self, model_name):
super().__init__()
model_func = getattr(torchvision.models, model_name)
self._model = model_func(pretrained=True)
state_dict = None
if model_name == 'resnet101':
state_dict = torch.hub.load_state_dict_from_url(
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet101_a1h-36d3f2aa.pth')
if model_name == 'resnet50':
state_dict = torch.hub.load_state_dict_from_url(
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1_0-14fe96d1.pth')
if state_dict:
self._model.load_state_dict(state_dict)
# self._model.fc = torch.nn.Identity()
self._model.eval()
self.ex = EmbeddingExtractor(self._model)
# self.ex.disp_modules(full=True)
self.ex.register('avgpool')
def __call__(self, img_tensor: torch.Tensor):
self.ex.emb_out.clear()
self._model(img_tensor)
# return self.fc_input[0]
return self.ex.emb_out.embeddings[0]
# return self._model(img_tensor).flatten().detach().numpy() #todo
def create_classifier(self, num_classes):
self._model.fc = Linear(self._model.fc.in_features, num_classes, bias=True)
# self._model.classifier.register_forward_hook(self._forward_hook)
# def train(self):
# """
# For training model
# """
# pass