| 
					
					
						
							
						
					
					
				 | 
				@ -32,7 +32,7 @@ if __name__ == '__main__': | 
			
		
		
	
		
			
				 | 
				 | 
				    towhee_img = Image(img_bytes, img_width, img_height, img_channel, img_mode, img_array) | 
				 | 
				 | 
				    towhee_img = Image(img_bytes, img_width, img_height, img_channel, img_mode, img_array) | 
			
		
		
	
		
			
				 | 
				 | 
				
 | 
				 | 
				 | 
				
 | 
			
		
		
	
		
			
				 | 
				 | 
				    op = ResnetImageEmbedding('resnet50', num_classes=10) | 
				 | 
				 | 
				    op = ResnetImageEmbedding('resnet50', num_classes=10) | 
			
		
		
	
		
			
				 | 
				 | 
				    # op.model_card = ModelCard(model_details="resnet test modelcard", training_data="use resnet test data") | 
				 | 
				 | 
				 | 
			
		
		
	
		
			
				 | 
				 | 
				 | 
				 | 
				 | 
				
 | 
			
		
		
	
		
			
				 | 
				 | 
				    old_out = op(towhee_img) | 
				 | 
				 | 
				    old_out = op(towhee_img) | 
			
		
		
	
		
			
				 | 
				 | 
				    # print(old_out.feature_vector[0][:10]) | 
				 | 
				 | 
				    # print(old_out.feature_vector[0][:10]) | 
			
		
		
	
		
			
				 | 
				 | 
				    # print(old_out.feature_vector[:10]) | 
				 | 
				 | 
				    # print(old_out.feature_vector[:10]) | 
			
		
		
	
	
		
			
				| 
					
					
					
						
							
						
					
				 | 
				@ -57,11 +57,14 @@ if __name__ == '__main__': | 
			
		
		
	
		
			
				 | 
				 | 
				    # train_data = dataset('mnist', transform=mnist_transform, download=True, root='data', train=True) | 
				 | 
				 | 
				    # train_data = dataset('mnist', transform=mnist_transform, download=True, root='data', train=True) | 
			
		
		
	
		
			
				 | 
				 | 
				    # eval_data = dataset('mnist', transform=mnist_transform, download=True, root='data', train=False) | 
				 | 
				 | 
				    # eval_data = dataset('mnist', transform=mnist_transform, download=True, root='data', train=False) | 
			
		
		
	
		
			
				 | 
				 | 
				    # training_config.output_dir = 'mnist_output' | 
				 | 
				 | 
				    # training_config.output_dir = 'mnist_output' | 
			
		
		
	
		
			
				 | 
				 | 
				 | 
				 | 
				 | 
				    # op.model_card = ModelCard(datasets='mnist dataset') | 
			
		
		
	
		
			
				 | 
				 | 
				 | 
				 | 
				 | 
				
 | 
			
		
		
	
		
			
				 | 
				 | 
				    fake_transform = transforms.Compose([transforms.ToTensor(), | 
				 | 
				 | 
				    fake_transform = transforms.Compose([transforms.ToTensor(), | 
			
		
		
	
		
			
				 | 
				 | 
				                                          RandomResizedCrop(224),]) | 
				 | 
				 | 
				 | 
			
		
		
	
		
			
				 | 
				 | 
				    train_data = dataset('fake', size=100, transform=fake_transform) | 
				 | 
				 | 
				 | 
			
		
		
	
		
			
				 | 
				 | 
				 | 
				 | 
				 | 
				                                         RandomResizedCrop(224)]) | 
			
		
		
	
		
			
				 | 
				 | 
				 | 
				 | 
				 | 
				    train_data = dataset('fake', size=20, transform=fake_transform) | 
			
		
		
	
		
			
				 | 
				 | 
				    eval_data = dataset('fake', size=10, transform=fake_transform) | 
				 | 
				 | 
				    eval_data = dataset('fake', size=10, transform=fake_transform) | 
			
		
		
	
		
			
				 | 
				 | 
				    training_config.output_dir = 'fake_output' | 
				 | 
				 | 
				    training_config.output_dir = 'fake_output' | 
			
		
		
	
		
			
				 | 
				 | 
				 | 
				 | 
				 | 
				    op.model_card = ModelCard(datasets='fake dataset') | 
			
		
		
	
		
			
				 | 
				 | 
				
 | 
				 | 
				 | 
				
 | 
			
		
		
	
		
			
				 | 
				 | 
				    # trainer = op.setup_trainer() | 
				 | 
				 | 
				    # trainer = op.setup_trainer() | 
			
		
		
	
		
			
				 | 
				 | 
				    # print(op.get_model()) | 
				 | 
				 | 
				    # print(op.get_model()) | 
			
		
		
	
	
		
			
				| 
					
					
					
						
							
						
					
				 | 
				@ -83,8 +86,10 @@ if __name__ == '__main__': | 
			
		
		
	
		
			
				 | 
				 | 
				
 | 
				 | 
				 | 
				
 | 
			
		
		
	
		
			
				 | 
				 | 
				    freezer = LayerFreezer(op.get_model()) | 
				 | 
				 | 
				    freezer = LayerFreezer(op.get_model()) | 
			
		
		
	
		
			
				 | 
				 | 
				    freezer.set_slice(-1) | 
				 | 
				 | 
				    freezer.set_slice(-1) | 
			
		
		
	
		
			
				 | 
				 | 
				    op.train(training_config, train_dataset=train_data, eval_dataset=eval_data) | 
				 | 
				 | 
				 | 
			
		
		
	
		
			
				 | 
				 | 
				    # op.train(training_config, train_dataset=train_data, eval_dataset=eval_data, resume_checkpoint_path=training_config.output_dir + '/epoch_2') | 
				 | 
				 | 
				 | 
			
		
		
	
		
			
				 | 
				 | 
				 | 
				 | 
				 | 
				
 | 
			
		
		
	
		
			
				 | 
				 | 
				 | 
				 | 
				 | 
				    # op.train(training_config, train_dataset=train_data, eval_dataset=eval_data) | 
			
		
		
	
		
			
				 | 
				 | 
				 | 
				 | 
				 | 
				    op.train(training_config, train_dataset=train_data, eval_dataset=eval_data, | 
			
		
		
	
		
			
				 | 
				 | 
				 | 
				 | 
				 | 
				             resume_checkpoint_path=training_config.output_dir + '/epoch_2') | 
			
		
		
	
		
			
				 | 
				 | 
				
 | 
				 | 
				 | 
				
 | 
			
		
		
	
		
			
				 | 
				 | 
				    # op.save('./test_save') | 
				 | 
				 | 
				    # op.save('./test_save') | 
			
		
		
	
		
			
				 | 
				 | 
				    # op.load('./test_save')\ | 
				 | 
				 | 
				    # op.load('./test_save')\ | 
			
		
		
	
	
		
			
				| 
					
						
							
						
					
					
					
				 | 
				
  |