|
@ -29,7 +29,7 @@ if __name__ == '__main__': |
|
|
towhee_img = Image(img_bytes, img_width, img_height, img_channel, img_mode, img_array) |
|
|
towhee_img = Image(img_bytes, img_width, img_height, img_channel, img_mode, img_array) |
|
|
|
|
|
|
|
|
op = ResnetImageEmbedding('resnet34') |
|
|
op = ResnetImageEmbedding('resnet34') |
|
|
op.model_card = ModelCard(model_details="resnet test modelcard", training_data="use resnet test data") |
|
|
|
|
|
|
|
|
# op.model_card = ModelCard(model_details="resnet test modelcard", training_data="use resnet test data") |
|
|
# old_out = op(towhee_img) |
|
|
# old_out = op(towhee_img) |
|
|
# print(old_out.feature_vector[0]) |
|
|
# print(old_out.feature_vector[0]) |
|
|
|
|
|
|
|
@ -51,33 +51,31 @@ if __name__ == '__main__': |
|
|
RandomResizedCrop(224), |
|
|
RandomResizedCrop(224), |
|
|
Lambda(lambda x: x.repeat(3, 1, 1)), |
|
|
Lambda(lambda x: x.repeat(3, 1, 1)), |
|
|
transforms.Normalize(mean=[0.5], std=[0.5])]) |
|
|
transforms.Normalize(mean=[0.5], std=[0.5])]) |
|
|
train_data = get_dataset('mnist', transform=mnist_transform, download=True, root='data') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train_data = get_dataset('mnist', transform=mnist_transform, download=True, root='data', train=True) |
|
|
|
|
|
eval_data = get_dataset('mnist', transform=mnist_transform, download=True, root='data', train=False) |
|
|
# fake_transform = transforms.Compose([transforms.ToTensor(), |
|
|
# fake_transform = transforms.Compose([transforms.ToTensor(), |
|
|
# RandomResizedCrop(224),]) |
|
|
# RandomResizedCrop(224),]) |
|
|
# train_data = get_dataset('fake', size=20, transform=fake_transform) |
|
|
# train_data = get_dataset('fake', size=20, transform=fake_transform) |
|
|
|
|
|
|
|
|
op.change_before_train(10) |
|
|
op.change_before_train(10) |
|
|
trainer = op.setup_trainer() |
|
|
trainer = op.setup_trainer() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
my_optimimzer = AdamW(op.get_model().parameters(), lr=0.002, betas=(0.91, 0.98), eps=1e-08, weight_decay=0.01, amsgrad=False) |
|
|
|
|
|
|
|
|
# my_optimimzer = AdamW(op.get_model().parameters(), lr=0.002, betas=(0.91, 0.98), eps=1e-08, weight_decay=0.01, amsgrad=False) |
|
|
# op.setup_trainer() |
|
|
# op.setup_trainer() |
|
|
|
|
|
|
|
|
# trainer.add_callback() |
|
|
# trainer.add_callback() |
|
|
# trainer.set_optimizer() |
|
|
# trainer.set_optimizer() |
|
|
|
|
|
|
|
|
op.trainer.set_optimizer(my_optimimzer) |
|
|
|
|
|
trainer.configs.save_to_yaml('changed_optimizer_yaml.yaml') |
|
|
|
|
|
|
|
|
# op.trainer.set_optimizer(my_optimimzer) |
|
|
|
|
|
# trainer.configs.save_to_yaml('changed_optimizer_yaml.yaml') |
|
|
|
|
|
|
|
|
# my_loss = nn.BCELoss() |
|
|
# my_loss = nn.BCELoss() |
|
|
# trainer.set_loss(my_loss, 'my_loss111') |
|
|
# trainer.set_loss(my_loss, 'my_loss111') |
|
|
# trainer.configs.save_to_yaml('chaned_loss_yaml.yaml') |
|
|
# trainer.configs.save_to_yaml('chaned_loss_yaml.yaml') |
|
|
# op.trainer._create_optimizer() |
|
|
# op.trainer._create_optimizer() |
|
|
# op.trainer.set_optimizer() |
|
|
# op.trainer.set_optimizer() |
|
|
op.train(training_config, train_dataset=train_data) |
|
|
|
|
|
training_config.num_epoch = 3 |
|
|
|
|
|
op.train(training_config, train_dataset=train_data, resume_checkpoint_path=training_config.output_dir + '/epoch_2') |
|
|
|
|
|
|
|
|
op.train(training_config, train_dataset=train_data, eval_dataset=eval_data) |
|
|
|
|
|
# training_config.num_epoch = 3 |
|
|
|
|
|
# op.train(training_config, train_dataset=train_data, resume_checkpoint_path=training_config.output_dir + '/epoch_2') |
|
|
|
|
|
|
|
|
# op.save('./test_save') |
|
|
# op.save('./test_save') |
|
|
# op.load('./test_save') |
|
|
# op.load('./test_save') |
|
|