towhee
/
torch-vggish
copied
10 changed files with 177 additions and 82 deletions
@ -1 +0,0 @@ |
|||||
vggish.pth filter=lfs diff=lfs merge=lfs -text |
|
@ -1,24 +0,0 @@ |
|||||
# Copyright 2021 Zilliz. All rights reserved. |
|
||||
# |
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
||||
# you may not use this file except in compliance with the License. |
|
||||
# You may obtain a copy of the License at |
|
||||
# |
|
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
|
||||
# |
|
||||
# Unless required by applicable law or agreed to in writing, software |
|
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
||||
# See the License for the specific language governing permissions and |
|
||||
# limitations under the License. |
|
||||
|
|
||||
import os |
|
||||
|
|
||||
# For requirements. |
|
||||
try: |
|
||||
import timm |
|
||||
except ModuleNotFoundError: |
|
||||
os.system('pip install timm') |
|
||||
|
|
||||
from timm.data import resolve_data_config |
|
||||
from timm.data.transforms_factory import create_transform |
|
@ -1,51 +0,0 @@ |
|||||
# Copyright 2021 Zilliz. All rights reserved. |
|
||||
# |
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
||||
# you may not use this file except in compliance with the License. |
|
||||
# You may obtain a copy of the License at |
|
||||
# |
|
||||
# http://www.apache.org/licenses/LICENSE-2.0 |
|
||||
# |
|
||||
# Unless required by applicable law or agreed to in writing, software |
|
||||
# distributed under the License is distributed on an "AS IS" BASIS, |
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
||||
# See the License for the specific language governing permissions and |
|
||||
# limitations under the License. |
|
||||
|
|
||||
from torch import nn |
|
||||
import torch |
|
||||
import sys |
|
||||
from pathlib import Path |
|
||||
|
|
||||
from towhee.models.vggish.torch_vggish import VGG |
|
||||
|
|
||||
sys.path.append(str(Path(__file__).parent)) |
|
||||
|
|
||||
import vggish_input |
|
||||
|
|
||||
class Model(nn.Module): |
|
||||
""" |
|
||||
PyTorch model class |
|
||||
""" |
|
||||
def __init__(self, weights_path: str=None): |
|
||||
super().__init__() |
|
||||
self._model = VGG() |
|
||||
if not weights_path: |
|
||||
path = str(Path(__file__).parent) |
|
||||
weights_path = path + '/vggish.pth' |
|
||||
state_dict = torch.load(weights_path, map_location=torch.device('cpu')) |
|
||||
self._model.load_state_dict(state_dict) |
|
||||
self._model.eval() |
|
||||
|
|
||||
def forward(self, x): |
|
||||
return self._model(x) |
|
||||
|
|
||||
def preprocess(self, audio_path: str): |
|
||||
audio_tensors = vggish_input.wavfile_to_examples(audio_path) |
|
||||
return audio_tensors |
|
||||
|
|
||||
def train(self): |
|
||||
""" |
|
||||
For training model |
|
||||
""" |
|
||||
pass |
|
@ -0,0 +1,84 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
|
||||
|
import logging |
||||
|
import warnings |
||||
|
|
||||
|
import os |
||||
|
import sys |
||||
|
import numpy |
||||
|
from pathlib import Path |
||||
|
from typing import Union |
||||
|
|
||||
|
import torch |
||||
|
|
||||
|
from towhee.operator.base import NNOperator |
||||
|
from towhee.models.vggish.torch_vggish import VGG |
||||
|
from towhee import register |
||||
|
|
||||
|
sys.path.append(str(Path(__file__).parent)) |
||||
|
import vggish_input |
||||
|
|
||||
|
warnings.filterwarnings('ignore') |
||||
|
log = logging.getLogger() |
||||
|
|
||||
|
|
||||
|
@register(output_schema=['vec']) |
||||
|
class Vggish(NNOperator): |
||||
|
""" |
||||
|
""" |
||||
|
|
||||
|
def __init__(self, weights_path: str = None, framework: str = 'pytorch') -> None: |
||||
|
super().__init__(framework=framework) |
||||
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
||||
|
self.model = VGG() |
||||
|
if not weights_path: |
||||
|
path = str(Path(__file__).parent) |
||||
|
weights_path = os.path.join(path, 'vggish.pth') |
||||
|
state_dict = torch.load(weights_path, map_location=torch.device('cpu')) |
||||
|
self.model.load_state_dict(state_dict) |
||||
|
self.model.eval() |
||||
|
self.model.to(self.device) |
||||
|
|
||||
|
def __call__(self, audio: Union[str, numpy.ndarray], sr: int = None) -> numpy.ndarray: |
||||
|
audio_tensors = self.preprocess(audio, sr).to(self.device) |
||||
|
features = self.model(audio_tensors) |
||||
|
outs = features.to("cpu") |
||||
|
return outs.detach().numpy() |
||||
|
|
||||
|
def preprocess(self, audio: Union[str, numpy.ndarray], sr: int = None): |
||||
|
if isinstance(audio, str): |
||||
|
audio_tensors = vggish_input.wavfile_to_examples(audio) |
||||
|
elif isinstance(audio, numpy.ndarray): |
||||
|
try: |
||||
|
audio = audio.transpose() |
||||
|
audio_tensors = vggish_input.waveform_to_examples(audio, sr, return_tensor=True) |
||||
|
except Exception as e: |
||||
|
log.error("Fail to load audio data.") |
||||
|
raise e |
||||
|
else: |
||||
|
log.error(f"Invalid input audio: {type(audio)}") |
||||
|
return audio_tensors |
||||
|
|
||||
|
|
||||
|
# if __name__ == '__main__': |
||||
|
# encoder = Vggish() |
||||
|
# |
||||
|
# # audio_path = '/path/to/audio' |
||||
|
# # vec = encoder(audio_path) |
||||
|
# |
||||
|
# audio_data = numpy.zeros((2, 441344)) |
||||
|
# sample_rate = 44100 |
||||
|
# vec = encoder(audio_data, sample_rate) |
||||
|
# print(vec) |
@ -0,0 +1,83 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
|
||||
|
import logging |
||||
|
import warnings |
||||
|
|
||||
|
import os |
||||
|
import sys |
||||
|
import numpy |
||||
|
from pathlib import Path |
||||
|
from typing import Union, List, NamedTuple |
||||
|
|
||||
|
import torch |
||||
|
|
||||
|
from towhee.operator.base import NNOperator |
||||
|
from towhee.models.vggish.torch_vggish import VGG |
||||
|
from towhee import register |
||||
|
|
||||
|
sys.path.append(str(Path(__file__).parent)) |
||||
|
import vggish_input |
||||
|
|
||||
|
warnings.filterwarnings('ignore') |
||||
|
log = logging.getLogger() |
||||
|
|
||||
|
|
||||
|
AudioOutput = NamedTuple('AudioOutput', [('vec', 'ndarray')]) |
||||
|
|
||||
|
|
||||
|
class Vggish(NNOperator): |
||||
|
""" |
||||
|
""" |
||||
|
|
||||
|
def __init__(self, weights_path: str = None, framework: str = 'pytorch') -> None: |
||||
|
super().__init__(framework=framework) |
||||
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
||||
|
self.model = VGG() |
||||
|
if not weights_path: |
||||
|
path = str(Path(__file__).parent) |
||||
|
weights_path = os.path.join(path, 'vggish.pth') |
||||
|
state_dict = torch.load(weights_path, map_location=torch.device('cpu')) |
||||
|
self.model.load_state_dict(state_dict) |
||||
|
self.model.eval() |
||||
|
self.model.to(self.device) |
||||
|
|
||||
|
def __call__(self, datas: List[NamedTuple('data', [('audio', 'ndarray'), ('sample_rate', 'int')])]) -> numpy.ndarray: |
||||
|
audios = numpy.stack([item.audio for item in datas]) |
||||
|
sr = datas[0].sample_rate |
||||
|
audio_array = numpy.reshape(audios, (-1, 2)) |
||||
|
audio_tensors = self.preprocess(audio_array, sr).to(self.device) |
||||
|
features = self.model(audio_tensors) |
||||
|
outs = features.to("cpu") |
||||
|
return [AudioOutput(outs.detach().numpy())] |
||||
|
|
||||
|
def preprocess(self, audio: Union[str, numpy.ndarray], sr: int = None): |
||||
|
if audio.dtype == numpy.int32: |
||||
|
samples = audio / 2147483648.0 |
||||
|
elif audio.dtype == numpy.int16: |
||||
|
samples = audio / 32768.0 |
||||
|
return vggish_input.waveform_to_examples(samples, sr, return_tensor=True) |
||||
|
|
||||
|
|
||||
|
|
||||
|
# if __name__ == '__main__': |
||||
|
# encoder = Vggish() |
||||
|
# |
||||
|
# # audio_path = '/path/to/audio' |
||||
|
# # vec = encoder(audio_path) |
||||
|
# |
||||
|
# audio_data = numpy.zeros((2, 441344)) |
||||
|
# sample_rate = 44100 |
||||
|
# vec = encoder(audio_data, sample_rate) |
||||
|
# print(vec) |
Loading…
Reference in new issue