logo
Browse Source

Debug

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
main
Jael Gu 3 years ago
parent
commit
9cc90b9fd3
  1. 14
      torch_vggish.py

14
torch_vggish.py

@ -56,7 +56,7 @@ class Vggish(NNOperator):
def __call__(self, datas: List[NamedTuple('data', [('audio', 'ndarray'), ('sample_rate', 'int')])]) -> numpy.ndarray: def __call__(self, datas: List[NamedTuple('data', [('audio', 'ndarray'), ('sample_rate', 'int')])]) -> numpy.ndarray:
audios = numpy.stack([item.audio for item in datas]) audios = numpy.stack([item.audio for item in datas])
sr = datas[0].sample_rate sr = datas[0].sample_rate
audio_array = numpy.reshape(audios, (-1, 2))
audio_array = numpy.reshape(audios, (-1, 1))
audio_tensors = self.preprocess(audio_array, sr).to(self.device) audio_tensors = self.preprocess(audio_array, sr).to(self.device)
features = self.model(audio_tensors) features = self.model(audio_tensors)
outs = features.to("cpu") outs = features.to("cpu")
@ -66,15 +66,3 @@ class Vggish(NNOperator):
ii = numpy.iinfo(audio.dtype) ii = numpy.iinfo(audio.dtype)
samples = 2 * audio / (ii.max - ii.min + 1) samples = 2 * audio / (ii.max - ii.min + 1)
return vggish_input.waveform_to_examples(samples, sr, return_tensor=True) return vggish_input.waveform_to_examples(samples, sr, return_tensor=True)
# if __name__ == '__main__':
# encoder = Vggish()
#
# # audio_path = '/path/to/audio'
# # vec = encoder(audio_path)
#
# audio_data = numpy.zeros((2, 441344))
# sample_rate = 44100
# vec = encoder(audio_data, sample_rate)
# print(vec)

Loading…
Cancel
Save