| 
					
					
						
							
						
					
					
				 | 
				@ -56,7 +56,7 @@ class Vggish(NNOperator): | 
			
		
		
	
		
			
				 | 
				 | 
				    def __call__(self, datas: List[NamedTuple('data', [('audio', 'ndarray'), ('sample_rate', 'int')])]) -> numpy.ndarray: | 
				 | 
				 | 
				    def __call__(self, datas: List[NamedTuple('data', [('audio', 'ndarray'), ('sample_rate', 'int')])]) -> numpy.ndarray: | 
			
		
		
	
		
			
				 | 
				 | 
				        audios = numpy.stack([item.audio for item in datas]) | 
				 | 
				 | 
				        audios = numpy.stack([item.audio for item in datas]) | 
			
		
		
	
		
			
				 | 
				 | 
				        sr = datas[0].sample_rate | 
				 | 
				 | 
				        sr = datas[0].sample_rate | 
			
		
		
	
		
			
				 | 
				 | 
				        audio_array = numpy.reshape(audios, (-1, 2)) | 
				 | 
				 | 
				 | 
			
		
		
	
		
			
				 | 
				 | 
				 | 
				 | 
				 | 
				        audio_array = numpy.reshape(audios, (-1, 1)) | 
			
		
		
	
		
			
				 | 
				 | 
				        audio_tensors = self.preprocess(audio_array, sr).to(self.device) | 
				 | 
				 | 
				        audio_tensors = self.preprocess(audio_array, sr).to(self.device) | 
			
		
		
	
		
			
				 | 
				 | 
				        features = self.model(audio_tensors) | 
				 | 
				 | 
				        features = self.model(audio_tensors) | 
			
		
		
	
		
			
				 | 
				 | 
				        outs = features.to("cpu") | 
				 | 
				 | 
				        outs = features.to("cpu") | 
			
		
		
	
	
		
			
				| 
					
					
					
						
							
						
					
				 | 
				@ -66,15 +66,3 @@ class Vggish(NNOperator): | 
			
		
		
	
		
			
				 | 
				 | 
				        ii = numpy.iinfo(audio.dtype) | 
				 | 
				 | 
				        ii = numpy.iinfo(audio.dtype) | 
			
		
		
	
		
			
				 | 
				 | 
				        samples = 2 * audio / (ii.max - ii.min + 1) | 
				 | 
				 | 
				        samples = 2 * audio / (ii.max - ii.min + 1) | 
			
		
		
	
		
			
				 | 
				 | 
				        return vggish_input.waveform_to_examples(samples, sr, return_tensor=True) | 
				 | 
				 | 
				        return vggish_input.waveform_to_examples(samples, sr, return_tensor=True) | 
			
		
		
	
		
			
				 | 
				 | 
				
 | 
				 | 
				 | 
				 | 
			
		
		
	
		
			
				 | 
				 | 
				
 | 
				 | 
				 | 
				 | 
			
		
		
	
		
			
				 | 
				 | 
				# if __name__ == '__main__': | 
				 | 
				 | 
				 | 
			
		
		
	
		
			
				 | 
				 | 
				#     encoder = Vggish() | 
				 | 
				 | 
				 | 
			
		
		
	
		
			
				 | 
				 | 
				# | 
				 | 
				 | 
				 | 
			
		
		
	
		
			
				 | 
				 | 
				#     # audio_path = '/path/to/audio' | 
				 | 
				 | 
				 | 
			
		
		
	
		
			
				 | 
				 | 
				#     # vec = encoder(audio_path) | 
				 | 
				 | 
				 | 
			
		
		
	
		
			
				 | 
				 | 
				# | 
				 | 
				 | 
				 | 
			
		
		
	
		
			
				 | 
				 | 
				#     audio_data = numpy.zeros((2, 441344)) | 
				 | 
				 | 
				 | 
			
		
		
	
		
			
				 | 
				 | 
				#     sample_rate = 44100 | 
				 | 
				 | 
				 | 
			
		
		
	
		
			
				 | 
				 | 
				#     vec = encoder(audio_data, sample_rate) | 
				 | 
				 | 
				 | 
			
		
		
	
		
			
				 | 
				 | 
				#     print(vec) | 
				 | 
				 | 
				 | 
			
		
		
	
	
		
			
				| 
					
						
							
						
					
					
					
				 | 
				
  |