Browse Source
Update
Signed-off-by: shiyu22 <shiyu.chen@zilliz.com>
main
3 changed files with
6 additions and
8 deletions
-
README.md
-
transform_image.py
-
transform_image.yaml
|
|
@ -21,14 +21,14 @@ __init__(self, size: int) |
|
|
|
- supported types: `int` |
|
|
|
|
|
|
|
```python |
|
|
|
__call__(self, img: Union[np.ndarray, Image.Image, torch.Tensor, str]) |
|
|
|
__call__(self, img: Union[Image.Image, torch.Tensor, str]) |
|
|
|
``` |
|
|
|
|
|
|
|
**Args:** |
|
|
|
|
|
|
|
- img: |
|
|
|
- the input image to be processed |
|
|
|
- supported type: `np.ndarry` or ` PIL.image` or `str` (path of the image) |
|
|
|
- supported type: ` PIL.image` or `str` (path of the image) |
|
|
|
|
|
|
|
**Returns:** |
|
|
|
|
|
|
@ -51,4 +51,3 @@ The `towhee/transform-image` Operator is used for image transformation and is an |
|
|
|
## Reference |
|
|
|
|
|
|
|
- https://pytorch.org/vision/stable/transforms.html |
|
|
|
|
|
|
|
|
|
@ -15,7 +15,6 @@ |
|
|
|
from typing import NamedTuple, Union |
|
|
|
|
|
|
|
import torch |
|
|
|
import numpy as np |
|
|
|
from PIL import Image |
|
|
|
from torchvision import transforms |
|
|
|
|
|
|
@ -43,14 +42,14 @@ class TransformImage(Operator): |
|
|
|
] |
|
|
|
) |
|
|
|
|
|
|
|
def __call__(self, img: Union[np.ndarray, Image.Image, torch.Tensor, str]) -> NamedTuple('Outputs', [('img_transformed', torch.Tensor)]): |
|
|
|
def __call__(self, img: Union[Image.Image, torch.Tensor, str]) -> NamedTuple('Outputs', [('img_transformed', torch.Tensor)]): |
|
|
|
""" |
|
|
|
Call it when use this class. |
|
|
|
|
|
|
|
Args: |
|
|
|
img(`Union[np.ndarray, Image.Image, torch.Tensor, str]`): |
|
|
|
img(`Union[mage.Image, torch.Tensor, str]`): |
|
|
|
The image data to be normalized, you can try one of the |
|
|
|
four formats: np.ndarray, Image.Image, torch.Tensor and str. |
|
|
|
four formats: Image.Image, torch.Tensor and str. |
|
|
|
Returns: |
|
|
|
(`torch.Tensor`) |
|
|
|
The normalized image tensor. |
|
|
|
|
|
@ -8,6 +8,6 @@ init: |
|
|
|
size: int |
|
|
|
call: |
|
|
|
input: |
|
|
|
img: Union[np.ndarray, Image.Image, torch.Tensor, str] |
|
|
|
img: Union[Image.Image, torch.Tensor, str] |
|
|
|
output: |
|
|
|
img_transformed: torch.Tensor |