|
|
@ -18,10 +18,11 @@ from typing import NamedTuple |
|
|
|
from pathlib import Path |
|
|
|
from PIL import Image |
|
|
|
import torch |
|
|
|
from torch import nn as nn |
|
|
|
import numpy |
|
|
|
import os |
|
|
|
|
|
|
|
from towhee.operator import Operator |
|
|
|
from towhee.operator import Operator, NNOperator |
|
|
|
from timm.data import resolve_data_config |
|
|
|
from timm.data.transforms_factory import create_transform |
|
|
|
from towhee.utils.pil_utils import to_pil |
|
|
@ -29,7 +30,7 @@ from towhee.utils.pil_utils import to_pil |
|
|
|
import warnings |
|
|
|
warnings.filterwarnings("ignore") |
|
|
|
|
|
|
|
class VitImageEmbedding(Operator): |
|
|
|
class VitImageEmbedding(NNOperator): |
|
|
|
""" |
|
|
|
Embedding extractor using ViT. |
|
|
|
Args: |
|
|
@ -39,7 +40,7 @@ class VitImageEmbedding(Operator): |
|
|
|
Path to local weights. |
|
|
|
""" |
|
|
|
|
|
|
|
def __init__(self, model_name: str = 'vit_large_patch16_224', |
|
|
|
def __init__(self, model_name: str = 'vit_large_patch16_224', num_classes: int = 1000, |
|
|
|
framework: str = 'pytorch', weights_path: str = None) -> None: |
|
|
|
super().__init__() |
|
|
|
if framework == 'pytorch': |
|
|
@ -49,7 +50,7 @@ class VitImageEmbedding(Operator): |
|
|
|
spec = importlib.util.spec_from_file_location(opname, path) |
|
|
|
module = importlib.util.module_from_spec(spec) |
|
|
|
spec.loader.exec_module(module) |
|
|
|
self.model = module.Model(model_name, weights_path) |
|
|
|
self.model = module.Model(model_name, weights_path, num_classes=num_classes) |
|
|
|
config = resolve_data_config({}, model=self.model._model) |
|
|
|
self.tfms = create_transform(**config) |
|
|
|
|
|
|
@ -57,4 +58,7 @@ class VitImageEmbedding(Operator): |
|
|
|
img = self.tfms(to_pil(image)).unsqueeze(0) |
|
|
|
Outputs = NamedTuple('Outputs', [('feature_vector', numpy.ndarray)]) |
|
|
|
features = self.model(img) |
|
|
|
return Outputs(features.flatten().detach().numpy()) |
|
|
|
return Outputs(features) |
|
|
|
|
|
|
|
def get_model(self) -> nn.Module: |
|
|
|
return self.model._model |